Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Tomoya Duenki, Yoshiho Ikeuchi
{"title":"Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements.","authors":"Tomoya Duenki, Yoshiho Ikeuchi","doi":"10.1002/adhm.202403771","DOIUrl":null,"url":null,"abstract":"<p><p>Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403771"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信