Structures and Rotational Constants of Monocyclic Monoterpenes at DFT Cost by Pisa Composite Schemes and Vibrational Perturbation Theory.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Federico Lazzari, Lina Uribe, Silvia Di Grande, Luigi Crisci, Marco Mendolicchio, Vincenzo Barone
{"title":"Structures and Rotational Constants of Monocyclic Monoterpenes at DFT Cost by Pisa Composite Schemes and Vibrational Perturbation Theory.","authors":"Federico Lazzari, Lina Uribe, Silvia Di Grande, Luigi Crisci, Marco Mendolicchio, Vincenzo Barone","doi":"10.1021/acs.jpca.4c07181","DOIUrl":null,"url":null,"abstract":"<p><p>The structures and rotational constants of prototypical monocyclic terpenes and terpenoids have been analyzed by a general computational strategy based on recent Pisa composite schemes (PCS) and vibrational perturbation theory at second order (VPT2). Concerning equilibrium geometries, a one-parameter empirical correction is added to bond lengths obtained by the revDSD-PBEP86 double hybrid functional in conjunction with a slightly modified cc-pVTZ-F12 basis set. The same functional and basis set give accurate harmonic frequencies, whereas the cheaper B3LYP hybrid functional in conjunction with a double-ζ basis set is employed to compute the semidiagonal cubic force constants needed to obtain vibrational corrections to the rotational constants in the framework of the VPT2 model. The final results obtained in this way show in most cases average deviations with respect to the experiment close to 0.1%, which correspond to errors around 1 mÅ and 0.1° for bond lengths and valence angles, respectively. The accuracy of the results has produced reliable estimates for species not analyzed yet experimentally. In addition to the intrinsic interest of the studied molecules, this article confirms that high-resolution spectroscopic studies of quite large systems can now be aided by a very accurate yet robust and user-friendly computational tool.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07181","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The structures and rotational constants of prototypical monocyclic terpenes and terpenoids have been analyzed by a general computational strategy based on recent Pisa composite schemes (PCS) and vibrational perturbation theory at second order (VPT2). Concerning equilibrium geometries, a one-parameter empirical correction is added to bond lengths obtained by the revDSD-PBEP86 double hybrid functional in conjunction with a slightly modified cc-pVTZ-F12 basis set. The same functional and basis set give accurate harmonic frequencies, whereas the cheaper B3LYP hybrid functional in conjunction with a double-ζ basis set is employed to compute the semidiagonal cubic force constants needed to obtain vibrational corrections to the rotational constants in the framework of the VPT2 model. The final results obtained in this way show in most cases average deviations with respect to the experiment close to 0.1%, which correspond to errors around 1 mÅ and 0.1° for bond lengths and valence angles, respectively. The accuracy of the results has produced reliable estimates for species not analyzed yet experimentally. In addition to the intrinsic interest of the studied molecules, this article confirms that high-resolution spectroscopic studies of quite large systems can now be aided by a very accurate yet robust and user-friendly computational tool.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信