Nitroxide radical contrast agents for safe magnetic resonance imaging: progress, challenges, and perspectives.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xunchun Yuan, Haojie Yu, Li Wang, Md Alim Uddin, Chenguang Ouyang
{"title":"Nitroxide radical contrast agents for safe magnetic resonance imaging: progress, challenges, and perspectives.","authors":"Xunchun Yuan, Haojie Yu, Li Wang, Md Alim Uddin, Chenguang Ouyang","doi":"10.1039/d4mh00995a","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents. Metal-free nitroxide radical contrast agents (NRCAs) effectively overcome the shortcomings of metal-based contrast agents and also have many advantages, including good biocompatibility, prolonged systemic circulation time, and easily functionalized structures. Importantly, since NRCAs acquire MRI signals with standard tissue water <sup>1</sup>H relaxation mechanisms, they have great potential to realize clinical translation among many metal-free MRI contrast agents. At present, NRCAs have been proposed as an effective substitute for metal-based MRI contrast agents. Herein, this review first briefly introduces NRCAs, including their composition, classification, mechanism of action, application performances and advantages. Then, this review highlights the progress of NRCAs, including small molecule-based NRCAs and polymer-based NRCAs. Finally, this review also discusses the challenges and future perspectives of NRCAs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00995a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents. Metal-free nitroxide radical contrast agents (NRCAs) effectively overcome the shortcomings of metal-based contrast agents and also have many advantages, including good biocompatibility, prolonged systemic circulation time, and easily functionalized structures. Importantly, since NRCAs acquire MRI signals with standard tissue water 1H relaxation mechanisms, they have great potential to realize clinical translation among many metal-free MRI contrast agents. At present, NRCAs have been proposed as an effective substitute for metal-based MRI contrast agents. Herein, this review first briefly introduces NRCAs, including their composition, classification, mechanism of action, application performances and advantages. Then, this review highlights the progress of NRCAs, including small molecule-based NRCAs and polymer-based NRCAs. Finally, this review also discusses the challenges and future perspectives of NRCAs.

用于安全磁共振成像的氮氧化物自由基造影剂:进展、挑战和前景。
磁共振成像被认为是21世纪最有价值的诊断技术之一。为了增强解剖特征的图像对比度,MRI造影剂在临床MRI诊断中被广泛使用,尤其是以钆、锰、氧化铁为主的造影剂。然而,这些金属基MRI造影剂对患者显示出潜在的毒性,这促使研究人员开发新的MRI造影剂,以取代金属基MRI造影剂。无金属氮氧化物自由基造影剂(NRCAs)有效克服了金属基造影剂的缺点,同时具有生物相容性好、体循环时间长、结构易于功能化等优点。重要的是,由于NRCAs通过标准的组织水1H弛豫机制获得MRI信号,因此它们具有在许多无金属MRI造影剂之间实现临床转化的巨大潜力。目前,NRCAs已被提出作为金属基MRI造影剂的有效替代品。本文首先对NRCAs的组成、分类、作用机理、应用性能及优势进行了简要介绍。综述了NRCAs的研究进展,包括基于小分子的NRCAs和基于聚合物的NRCAs。最后,本文还讨论了NRCAs面临的挑战和未来的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信