{"title":"Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode","authors":"Guifang Zeng, Qing Sun, Sharona Horta, Paulina R. Martínez-Alanis, Peng Wu, Jing Li, Shang Wang, Maria Ibáñez, Yanhong Tian, Lijie Ci, Andreu Cabot","doi":"10.1039/d4ee03750b","DOIUrl":null,"url":null,"abstract":"Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF<small><sub>3</sub></small>COO)<small><sub>2</sub></small> additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF<small><sub>2</sub></small> phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn<small><sup>2+</sup></small> conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"21 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03750b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrolyte additives are extensively validated effective in mitigating dendrite growth and parasitic reactions in aqueous zinc-ion batteries (AZIBs). Nonetheless, the mechanisms by which additives influence the formation and characteristics of the inorganic solid–electrolyte interphase (SEI) are not yet fully elucidated. Herein, we investigate how Zn(CF3COO)2 additives influence solvation structure and elucidate the mechanism by which these additives promote the dual reduction of anions. Through cryo-transmission electron microscopy analysis, we identified the SEI as a highly amorphous ZnS/ZnF2 phase. This amorphous hybrid SEI demonstrates exceptional stability, mechanical robustness, and high Zn2+ conductivity, effectively mitigating parasitic reactions and enhancing Zn plating/stripping reversibility. Even under elevated current densities, the Zn anode exhibits ultra-stable longevity and ultra-high reversibility. This study provides a comprehensive understanding of the intrinsic mechanisms governing solvation structure modulation that lead to the formation of amorphous hybrid SEI, underscoring their efficacy in enhancing the performance and durability of AZIBs.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).