NOMPC ion channel hinge forms a gating spring that initiates mechanosensation

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Philip Hehlert, Thomas Effertz, Ruo-Xu Gu, Björn Nadrowski, Bart R. H. Geurten, Dirk Beutner, Bert L. de Groot, Martin C. Göpfert
{"title":"NOMPC ion channel hinge forms a gating spring that initiates mechanosensation","authors":"Philip Hehlert, Thomas Effertz, Ruo-Xu Gu, Björn Nadrowski, Bart R. H. Geurten, Dirk Beutner, Bert L. de Groot, Martin C. Göpfert","doi":"10.1038/s41593-024-01849-3","DOIUrl":null,"url":null,"abstract":"The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate. This linker acts as a Hookean hinge that is ten times more elastic than the tether, with the linker hinge dictating channel gating and the intrinsic stiffness of the gating spring. Our study shows how mechanosensation is initiated molecularly; disentangles gating springs and tethers, and respective paradigms of channel gating; and puts forward gating springs as core ion channel constituents that enable efficient gating by diverse stimuli and in a wide variety of channels. Hehlert et al. report that the gating spring that pulls open mechanosensitive NOMPC channels is not their helical ankyrin tether, but instead an elastic hinge that suspends that tether on the channel gate.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 2","pages":"259-267"},"PeriodicalIF":21.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01849-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate. This linker acts as a Hookean hinge that is ten times more elastic than the tether, with the linker hinge dictating channel gating and the intrinsic stiffness of the gating spring. Our study shows how mechanosensation is initiated molecularly; disentangles gating springs and tethers, and respective paradigms of channel gating; and puts forward gating springs as core ion channel constituents that enable efficient gating by diverse stimuli and in a wide variety of channels. Hehlert et al. report that the gating spring that pulls open mechanosensitive NOMPC channels is not their helical ankyrin tether, but instead an elastic hinge that suspends that tether on the channel gate.

Abstract Image

Abstract Image

NOMPC离子通道铰链形成一个闸门弹簧,启动机械感觉
机械刺激的感觉是由打开机械感觉传导通道的弹性门控弹簧引起的。对门控弹簧的研究主要集中在力传递蛋白系链上,如果蝇机械感觉转导通道NOMPC的氨基末端锚蛋白系链。在这里,通过结合蛋白质结构域复制、机械测量、电生理学、分子动力学模拟和建模,我们确定了NOMPC门弹簧是锚蛋白系索和通道门之间的短连接。这种连接装置就像虎肯铰链一样,弹性是系绳的十倍,连接装置的铰链决定了通道的闸门和闸门弹簧的固有刚度。我们的研究显示了机械感觉是如何从分子上开始的;解开闸门弹簧和系绳,以及通道闸门的各自范例;提出了门控弹簧作为离子通道的核心成分,可以在多种刺激和多种通道中实现有效的门控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信