{"title":"Endogenous thymic regeneration: restoring T cell production following injury","authors":"David Granadier, Dante Acenas, Jarrod A. Dudakov","doi":"10.1038/s41577-024-01119-0","DOIUrl":null,"url":null,"abstract":"<p>Despite its importance for generating and maintaining a healthy and broad T cell repertoire, the thymus is exquisitely sensitive to acute damage. Marked thymic involution occurs in response to stimuli as diverse as infection, stress, pregnancy, malnutrition, drug use and cytoreductive chemotherapy. However, the thymus also has a remarkable capacity for repair, although this regenerative capacity declines with age. Endogenous thymic regeneration is a crucial process that allows for the recovery of immune competence after acute damage and delay to this recovery can have important clinical effects. Until recently, the mechanisms that drive endogenous thymic regeneration were not well understood, but recent work in mice has revealed multiple distinct pathways of regeneration and the molecular mechanisms that trigger these pathways after damage. In this Review, we discuss the effects of different types of damage to the thymus, with a focus on an emerging body of work in mice that provides insight into the cellular and molecular mechanisms that regulate endogenous tissue regeneration in the thymus. We also highlight some of the clinical challenges that are presented by dysregulated thymic regeneration.</p>","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"36 1","pages":""},"PeriodicalIF":67.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41577-024-01119-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its importance for generating and maintaining a healthy and broad T cell repertoire, the thymus is exquisitely sensitive to acute damage. Marked thymic involution occurs in response to stimuli as diverse as infection, stress, pregnancy, malnutrition, drug use and cytoreductive chemotherapy. However, the thymus also has a remarkable capacity for repair, although this regenerative capacity declines with age. Endogenous thymic regeneration is a crucial process that allows for the recovery of immune competence after acute damage and delay to this recovery can have important clinical effects. Until recently, the mechanisms that drive endogenous thymic regeneration were not well understood, but recent work in mice has revealed multiple distinct pathways of regeneration and the molecular mechanisms that trigger these pathways after damage. In this Review, we discuss the effects of different types of damage to the thymus, with a focus on an emerging body of work in mice that provides insight into the cellular and molecular mechanisms that regulate endogenous tissue regeneration in the thymus. We also highlight some of the clinical challenges that are presented by dysregulated thymic regeneration.
期刊介绍:
Nature Reviews Immunology is a journal that provides comprehensive coverage of all areas of immunology, including fundamental mechanisms and applied aspects. It has two international standard serial numbers (ISSN): 1474-1733 for print and 1474-1741 for online. In addition to review articles, the journal also features recent developments and new primary papers in the field, as well as reflections on influential people, papers, and events in the development of immunology. The subjects covered by Nature Reviews Immunology include allergy and asthma, autoimmunity, antigen processing and presentation, apoptosis and cell death, chemokines and chemokine receptors, cytokines and cytokine receptors, development and function of cells of the immune system, haematopoiesis, infection and immunity, immunotherapy, innate immunity, mucosal immunology and the microbiota, regulation of the immune response, signalling in the immune system, transplantation, tumour immunology and immunotherapy, and vaccine development.