Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export

IF 25.5 1区 医学 Q1 IMMUNOLOGY
Omkar Shinde, Joshua A. Boyer, Stephanie Cambier, Jordyn J. VanPortfliet, Xuewu Sui, Gaya P. Yadav, Elizabeth G. Viverette, Mario J. Borgnia, A. Phillip West, Qi Zhang, Daniel B. Stetson, Pingwei Li
{"title":"Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export","authors":"Omkar Shinde, Joshua A. Boyer, Stephanie Cambier, Jordyn J. VanPortfliet, Xuewu Sui, Gaya P. Yadav, Elizabeth G. Viverette, Mario J. Borgnia, A. Phillip West, Qi Zhang, Daniel B. Stetson, Pingwei Li","doi":"10.1016/j.immuni.2024.12.002","DOIUrl":null,"url":null,"abstract":"Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"12 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.12.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信