Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Daiwei Wang, Bharat Gwalani, Dominik Wierzbicki, Vijay Singh, Li-Ji Jhang, Tomas Rojas, Rong Kou, Meng Liao, Lei Ye, Heng Jiang, Shuhua Shan, Alexander Silver, Anh T. Ngo, Yonghua Du, Xiaolin Li, Donghai Wang
{"title":"Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries","authors":"Daiwei Wang, Bharat Gwalani, Dominik Wierzbicki, Vijay Singh, Li-Ji Jhang, Tomas Rojas, Rong Kou, Meng Liao, Lei Ye, Heng Jiang, Shuhua Shan, Alexander Silver, Anh T. Ngo, Yonghua Du, Xiaolin Li, Donghai Wang","doi":"10.1038/s41563-024-02057-x","DOIUrl":null,"url":null,"abstract":"<p>Lithium–sulfur (Li–S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic–electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur–MIEC interfaces in addition to traditional three-phase boundaries. Microscopic and tomographic analyses reveal the emergence of mixed-conducting domains embedded in sulfur at sulfur–MIEC boundaries, helping promote the thorough conversion of active sulfur into Li<sub>2</sub>S. Consequently, substantially improved active sulfur ratios (up to 87.3%) and conversion degrees (&gt;94%) are achieved in Li–S ASSBs with high discharge capacity (&gt;1,450 mAh g<sup>–1</sup>) and long cycle life (&gt;1,000 cycles). The strategy is also applied to enhance the active material utilization of other conversion cathodes.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02057-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium–sulfur (Li–S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic–electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur–MIEC interfaces in addition to traditional three-phase boundaries. Microscopic and tomographic analyses reveal the emergence of mixed-conducting domains embedded in sulfur at sulfur–MIEC boundaries, helping promote the thorough conversion of active sulfur into Li2S. Consequently, substantially improved active sulfur ratios (up to 87.3%) and conversion degrees (>94%) are achieved in Li–S ASSBs with high discharge capacity (>1,450 mAh g–1) and long cycle life (>1,000 cycles). The strategy is also applied to enhance the active material utilization of other conversion cathodes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信