In Situ Formation of 3D ZIF-8/MXene Composite Coating for High-Performance Zinc-Iodine Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinshuai Liu, Song Chen, Wenshuo Shang, Jizhen Ma, Jintao Zhang
{"title":"In Situ Formation of 3D ZIF-8/MXene Composite Coating for High-Performance Zinc-Iodine Batteries","authors":"Jinshuai Liu,&nbsp;Song Chen,&nbsp;Wenshuo Shang,&nbsp;Jizhen Ma,&nbsp;Jintao Zhang","doi":"10.1002/adfm.202422081","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn batteries have garnered a great deal of attention owing to environmental benefits, intrinsic safety, and cost-effectiveness. However, the commercial viability of these batteries is hindered by Zn anode issues, including dendrite formation and side reactions. Herein, the authors modulate the deposition behavior of Zn<sup>2+</sup> ions through a 3D ZIF-8@MXene (Z@M) composite coating. The Z@M coating can effectively reduce the contact area with the electrolyte, inhibiting the hydrogen evolution reaction and Zn corrosion. Notably, theoretical calculations and in situ experimental observations of Zn deposition reveal that the dual coordination mechanism of MXene and ZIF-8 significantly improves the adsorption energy of Zn atoms. This improved capacity to capture Zn<sup>2+</sup> ions will promote the desolvation of hydrated Zn<sup>2+</sup> ions, resulting in a dendrite-free deposition process. Therefore, in a symmetry cell, the Z@M-Zn anode demonstrates an impressive cycle life of 1050 h at 1 mA cm<sup>−2</sup>. When applies in an aqueous Zn-I<sub>2</sub> battery, the Z@M-Zn anode demonstrates a remarkable lifespan of over 2400 cycles at 5 C. This work provides a straightforward approach to designing reversible Zn anode, offering promising potential for broader applications across various metal-based anode systems.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn batteries have garnered a great deal of attention owing to environmental benefits, intrinsic safety, and cost-effectiveness. However, the commercial viability of these batteries is hindered by Zn anode issues, including dendrite formation and side reactions. Herein, the authors modulate the deposition behavior of Zn2+ ions through a 3D ZIF-8@MXene (Z@M) composite coating. The Z@M coating can effectively reduce the contact area with the electrolyte, inhibiting the hydrogen evolution reaction and Zn corrosion. Notably, theoretical calculations and in situ experimental observations of Zn deposition reveal that the dual coordination mechanism of MXene and ZIF-8 significantly improves the adsorption energy of Zn atoms. This improved capacity to capture Zn2+ ions will promote the desolvation of hydrated Zn2+ ions, resulting in a dendrite-free deposition process. Therefore, in a symmetry cell, the Z@M-Zn anode demonstrates an impressive cycle life of 1050 h at 1 mA cm−2. When applies in an aqueous Zn-I2 battery, the Z@M-Zn anode demonstrates a remarkable lifespan of over 2400 cycles at 5 C. This work provides a straightforward approach to designing reversible Zn anode, offering promising potential for broader applications across various metal-based anode systems.

Abstract Image

Abstract Image

高性能锌碘电池用三维ZIF-8/MXene复合涂层的原位形成
水锌电池因其环境效益、内在安全性和成本效益而受到广泛关注。然而,这些电池的商业可行性受到锌阳极问题的阻碍,包括枝晶的形成和副反应。在这里,作者通过3D ZIF-8@MXene (Z@M)复合涂层调节Zn2+离子的沉积行为。Z@M涂层可以有效减小与电解液的接触面积,抑制析氢反应和Zn腐蚀。值得注意的是,理论计算和Zn沉积的原位实验观察表明,MXene和ZIF-8的双重配位机制显著提高了Zn原子的吸附能。这种提高的捕获Zn2+离子的能力将促进水合Zn2+离子的溶解,导致无枝晶沉积过程。因此,在对称电池中,Z@M-Zn阳极在1ma cm - 2下的循环寿命为1050小时。当应用于含水Zn- i2电池时,Z@M-Zn阳极在5℃下表现出超过2400次循环的显着寿命。这项工作为设计可逆Zn阳极提供了一种直接的方法,为各种金属基阳极系统的更广泛应用提供了有希望的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信