Active Electron Cooling of Graphene

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Federico Paolucci, Federica Bianco, Francesco Giazotto, Stefano Roddaro
{"title":"Active Electron Cooling of Graphene","authors":"Federico Paolucci, Federica Bianco, Francesco Giazotto, Stefano Roddaro","doi":"10.1002/adfm.202418456","DOIUrl":null,"url":null,"abstract":"In the emergent field of quantum technology, the ability to manage heat at the nanoscale and in cryogenic conditions is crucial for enhancing device performance in terms of noise, coherence, and sensitivity. Here, active cooling and refrigeration of the electron gas in graphene are demonstrated, by taking advantage of nanoscale superconducting tunnel contacts able to pump or extract heat directly from the electrons in the device. These structures achieved a top <i>cooling</i> of electrons in graphene of ∼15.5 mK at a bath temperature of ∼448 mK, demonstrating the viability of the proposed device architecture. These experimental findings are backed by a detailed thermal model that accurately replicated the observed behavior. Alternative cooling schemes and perspectives are discussed in light of the reported results. Finally, graphene electron cooling could find application in superconducting hybrid quantum technologies, such as radiation detectors, logic gates and qubits.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418456","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the emergent field of quantum technology, the ability to manage heat at the nanoscale and in cryogenic conditions is crucial for enhancing device performance in terms of noise, coherence, and sensitivity. Here, active cooling and refrigeration of the electron gas in graphene are demonstrated, by taking advantage of nanoscale superconducting tunnel contacts able to pump or extract heat directly from the electrons in the device. These structures achieved a top cooling of electrons in graphene of ∼15.5 mK at a bath temperature of ∼448 mK, demonstrating the viability of the proposed device architecture. These experimental findings are backed by a detailed thermal model that accurately replicated the observed behavior. Alternative cooling schemes and perspectives are discussed in light of the reported results. Finally, graphene electron cooling could find application in superconducting hybrid quantum technologies, such as radiation detectors, logic gates and qubits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信