Enhancing Lithium-Mediated Nitrogen Reduction with Porous Polymer Fibers Featuring Lithium-Ion Affinity

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongwoo Shin, Ahee Choi, Dong-Yeob Han, Gwangsu Bak, Suhwan Yoo, Yeongbae Jeon, Soojin Park, Yun Jeong Hwang
{"title":"Enhancing Lithium-Mediated Nitrogen Reduction with Porous Polymer Fibers Featuring Lithium-Ion Affinity","authors":"Dongwoo Shin,&nbsp;Ahee Choi,&nbsp;Dong-Yeob Han,&nbsp;Gwangsu Bak,&nbsp;Suhwan Yoo,&nbsp;Yeongbae Jeon,&nbsp;Soojin Park,&nbsp;Yun Jeong Hwang","doi":"10.1002/adfm.202416484","DOIUrl":null,"url":null,"abstract":"<p>The interaction between the electrolyte and working electrode surface affects the cascade of reactions involving Li deposition, N<sub>2</sub>, and proton carriers and consequently the NH<sub>3</sub> production from Li-mediated nitrogen reduction reaction (Li-NRR). Efficient Li-NRR at low Li concentrations is particularly challenging because of low current density and uneven Li metal and lithium nitride plating. Here, the enhanced electrochemical production of NH<sub>3</sub> for a low Li concentration of 0.5 <span>m</span> are demonstrated by employing 3D porous polymer fibers featuring Li<sup>+</sup>-affinity on Cu electrodes. Raman and IR spectroscopic analyses exhibit that the polymeric fibers composed of carboxyl and hydroxyl groups can form Li-binding complexes and decrease interactions with solvents and anions in the electrolyte. The electrochemical analyses support that this polymeric porous structure serves to retain Li<sup>+</sup> near the electrode, expanding the active surface area and increasing current density. The Li-affinitive polymer fibers are effective even at a low Li salt concentration of 0.5 <span>m</span> to improve NH<sub>3</sub> yield and Faradaic efficiency. This study underscores the importance of porous morphology, Li affinity, and its analytical methods in understanding Li-NRR.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 10","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202416484","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between the electrolyte and working electrode surface affects the cascade of reactions involving Li deposition, N2, and proton carriers and consequently the NH3 production from Li-mediated nitrogen reduction reaction (Li-NRR). Efficient Li-NRR at low Li concentrations is particularly challenging because of low current density and uneven Li metal and lithium nitride plating. Here, the enhanced electrochemical production of NH3 for a low Li concentration of 0.5 m are demonstrated by employing 3D porous polymer fibers featuring Li+-affinity on Cu electrodes. Raman and IR spectroscopic analyses exhibit that the polymeric fibers composed of carboxyl and hydroxyl groups can form Li-binding complexes and decrease interactions with solvents and anions in the electrolyte. The electrochemical analyses support that this polymeric porous structure serves to retain Li+ near the electrode, expanding the active surface area and increasing current density. The Li-affinitive polymer fibers are effective even at a low Li salt concentration of 0.5 m to improve NH3 yield and Faradaic efficiency. This study underscores the importance of porous morphology, Li affinity, and its analytical methods in understanding Li-NRR.

Abstract Image

具有锂离子亲和特性的多孔聚合物纤维增强锂介导的氮还原
电解质和工作电极表面之间的相互作用影响了锂沉积、N2和质子载体的级联反应,从而影响了锂介导的氮还原反应(Li- nrr)中NH3的产生。由于低电流密度和不均匀的锂金属和氮化锂镀层,低锂浓度下的高效Li- nrr尤其具有挑战性。本文通过在Cu电极上使用具有Li+亲和力的三维多孔聚合物纤维,证明了在低Li浓度为0.5 m时,NH3的电化学生成得到了增强。拉曼光谱和红外光谱分析表明,由羧基和羟基组成的聚合物纤维可以形成锂结合配合物,减少与电解质中溶剂和阴离子的相互作用。电化学分析表明,这种聚合物多孔结构有助于保留电极附近的Li+,扩大活性表面积,增加电流密度。在低锂盐浓度(0.5 m)下,聚合物纤维仍能有效提高NH3产率和法拉第效率。这项研究强调了多孔形态、锂亲和力及其分析方法在理解Li- nrr中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信