{"title":"Constructing Robust and Efficient Ceramic Cells Air Electrodes Through Collaborative Optimization Bulk and Surface Phases","authors":"Ying Zhang, Yibei Wang, Zhilin Liu, Zhen Wang, Yaowen Wang, Youcheng Xiao, Bingbing Niu, Xiyang Wang, Wenquan Wang, Tianmin He","doi":"10.1002/adfm.202422531","DOIUrl":null,"url":null,"abstract":"Slow reaction kinetics of air electrodes is a common problem faced by low-temperature (<650 °C) oxygen-ion conducting solid oxide fuel cells (O-SOFCs) and proton-conducting reversible proton ceramic cells (R-PCCs). Here, an innovative approach is proposed to design and prepare two efficient and durable Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3−δ</sub> (BSCF)-based nanocomposites through self-reconstruction strategy, which aim to optimize both the bulk and surface properties of electrode materials simultaneously. Specifically, the two nanocomposites with a nominal composition of Ba<sub>0.4</sub>Sr<sub>0.5</sub>Cs<sub>0.1</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>M<sub>0.1</sub>O<sub>3−δ</sub> (M═Ni, Zr) consisted of the major perovskite phase and surface-enriched NiO and BaZrO<sub>3</sub> minor phases. When Ba<sub>0.4</sub>Sr<sub>0.5</sub>Cs<sub>0.1</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>Ni<sub>0.1</sub>O<sub>3−δ</sub> (BSCsCFNi) is used as an air electrode in O-SOFCs, the peak power density is 1.36 W cm<sup>−2</sup> at 650 °C; while Ba<sub>0.4</sub>Sr<sub>0.5</sub>Cs<sub>0.1</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>Zr<sub>0.1</sub>O<sub>3−δ</sub> (BSCsCFZr) is used in R-PCCs, a peak power density of 1.24 W cm<sup>−2</sup> and a current density of −1.98 A cm<sup>−2</sup> (1.3 V) are achieved at 650 °C, and exhibits stable reversibility over 100 h. Theoretical calculations and experiments indicate that Cs<sup>+</sup> doping enhances the bulk conduction of oxygen ions and protons; NiO nanoparticles enhance oxygen adsorption and surface exchange; BaZrO<sub>3</sub> nanoparticles increase steam adsorption and hydration capacity. This study provides a new idea for designing efficient and durable air electrodes of ceramic cells.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Slow reaction kinetics of air electrodes is a common problem faced by low-temperature (<650 °C) oxygen-ion conducting solid oxide fuel cells (O-SOFCs) and proton-conducting reversible proton ceramic cells (R-PCCs). Here, an innovative approach is proposed to design and prepare two efficient and durable Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)-based nanocomposites through self-reconstruction strategy, which aim to optimize both the bulk and surface properties of electrode materials simultaneously. Specifically, the two nanocomposites with a nominal composition of Ba0.4Sr0.5Cs0.1Co0.7Fe0.2M0.1O3−δ (M═Ni, Zr) consisted of the major perovskite phase and surface-enriched NiO and BaZrO3 minor phases. When Ba0.4Sr0.5Cs0.1Co0.7Fe0.2Ni0.1O3−δ (BSCsCFNi) is used as an air electrode in O-SOFCs, the peak power density is 1.36 W cm−2 at 650 °C; while Ba0.4Sr0.5Cs0.1Co0.7Fe0.2Zr0.1O3−δ (BSCsCFZr) is used in R-PCCs, a peak power density of 1.24 W cm−2 and a current density of −1.98 A cm−2 (1.3 V) are achieved at 650 °C, and exhibits stable reversibility over 100 h. Theoretical calculations and experiments indicate that Cs+ doping enhances the bulk conduction of oxygen ions and protons; NiO nanoparticles enhance oxygen adsorption and surface exchange; BaZrO3 nanoparticles increase steam adsorption and hydration capacity. This study provides a new idea for designing efficient and durable air electrodes of ceramic cells.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.