Nanoengineered Surfaces for Robust Droplet TENGs: Mitigating Contamination and Improving Longevity

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ying Ge, Huaifang Qin, Jingjing Wang, Jingjing Zhang, Zunkang Zhou, Yao Meng, Zanying Huang, Ke Yang, Zuliang Du, Peng Cui, Gang Cheng
{"title":"Nanoengineered Surfaces for Robust Droplet TENGs: Mitigating Contamination and Improving Longevity","authors":"Ying Ge, Huaifang Qin, Jingjing Wang, Jingjing Zhang, Zunkang Zhou, Yao Meng, Zanying Huang, Ke Yang, Zuliang Du, Peng Cui, Gang Cheng","doi":"10.1002/adfm.202419050","DOIUrl":null,"url":null,"abstract":"The droplet triboelectric nanogenerator (D-TENG) harnesses energy from natural water droplets, though its performance and lifespan can be compromised by contamination on the functional layer. Water molecules have a strong affinity for polymer surfaces, which increases surface tension and the sliding-off angle, leading to greater droplet adhesion. As these droplets evaporate, they leave behind residues, such as calcium (Ca) and magnesium (Mg) salts, that obscure the polymer surface, thereby diminishing the electrification area and altering droplet dynamics—resulting in decreased electrical output. This study presents a micro-nanostructured D-TENG with advanced anti-fouling capabilities. By adding a layer of metal nanoparticles to the polymer surface, followed by ion etching and fluorination grafting, water retention and ion accumulation are effectively minimized. The anti-fouling D-TENG demonstrates a fourfold increase in electrical output compared to its predecessor. Following 10 000 droplet interactions, the output of the original D-TENG drops by 53%, whereas the anti-fouling variant only experiences a 7% reduction. These enhancements provide significant insights for D-TENG applications and contribute to the development of anti-fouling strategies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419050","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The droplet triboelectric nanogenerator (D-TENG) harnesses energy from natural water droplets, though its performance and lifespan can be compromised by contamination on the functional layer. Water molecules have a strong affinity for polymer surfaces, which increases surface tension and the sliding-off angle, leading to greater droplet adhesion. As these droplets evaporate, they leave behind residues, such as calcium (Ca) and magnesium (Mg) salts, that obscure the polymer surface, thereby diminishing the electrification area and altering droplet dynamics—resulting in decreased electrical output. This study presents a micro-nanostructured D-TENG with advanced anti-fouling capabilities. By adding a layer of metal nanoparticles to the polymer surface, followed by ion etching and fluorination grafting, water retention and ion accumulation are effectively minimized. The anti-fouling D-TENG demonstrates a fourfold increase in electrical output compared to its predecessor. Following 10 000 droplet interactions, the output of the original D-TENG drops by 53%, whereas the anti-fouling variant only experiences a 7% reduction. These enhancements provide significant insights for D-TENG applications and contribute to the development of anti-fouling strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信