Inorganic-Organic Hybrid Nanoparticles with Carbonate-triggered Emission-Colour-Shift

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Christian Ritschel, Lena Daumann, Claus Feldmann
{"title":"Inorganic-Organic Hybrid Nanoparticles with Carbonate-triggered Emission-Colour-Shift","authors":"Christian Ritschel, Lena Daumann, Claus Feldmann","doi":"10.1039/d4dt02344g","DOIUrl":null,"url":null,"abstract":"(Eu3+4[PTC]4–3)0.78(Eu3+[TREN-1,2-HOPO]3-)0.22 inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu3+, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis). With TREN-1,2-HOPO as antenna, the IOH-NPs show Eu3+-based red emission, whereas the PTC emission is totally quenched due to -stacking in the solid nanoparticles. After addition of carbonate, PTC is released from the IOH-NPs into solution, resulting in an increasing green emission of free PTC. The resulting carbonate-driven shift of the emission colour from red to green surprisingly allows to determine the carbonate concentration qualitatively and quantitatively in a concentration range of 1 µM to 2 mM and was tested for tap water as a specific example.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02344g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

(Eu3+4[PTC]4–3)0.78(Eu3+[TREN-1,2-HOPO]3-)0.22 inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu3+, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis). With TREN-1,2-HOPO as antenna, the IOH-NPs show Eu3+-based red emission, whereas the PTC emission is totally quenched due to -stacking in the solid nanoparticles. After addition of carbonate, PTC is released from the IOH-NPs into solution, resulting in an increasing green emission of free PTC. The resulting carbonate-driven shift of the emission colour from red to green surprisingly allows to determine the carbonate concentration qualitatively and quantitatively in a concentration range of 1 µM to 2 mM and was tested for tap water as a specific example.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信