A programmable metasurface antenna that approaches the wireless information mapping limit

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Haotian Wu, Ruiwen Shao, Zhixia Xu, Jun Wei Wu, Shurun Tan, Xixi Wang, Zhenjie Qi, Qiang Cheng, Yuanjin Zheng, Yu Luo, Tie Jun Cui
{"title":"A programmable metasurface antenna that approaches the wireless information mapping limit","authors":"Haotian Wu, Ruiwen Shao, Zhixia Xu, Jun Wei Wu, Shurun Tan, Xixi Wang, Zhenjie Qi, Qiang Cheng, Yuanjin Zheng, Yu Luo, Tie Jun Cui","doi":"10.1038/s41928-024-01298-7","DOIUrl":null,"url":null,"abstract":"Digitally programmable metasurfaces are of potential use in next-generation mobile communications due to their ability to perform wireless data transmission without digital-to-analogue conversion or frequency mixing. However, communication networks based on programmable metasurfaces currently suffer from relatively low data transmission rates and low information mapping efficiencies (where the transmitted information per unit switching time is much lower than the information that encodes the programmable pattern). Here we report a programmable metasurface antenna that can approach the theoretical upper limit of the information mapping efficiency. Our approach combines non-recurrent encoding with spatial harmonic retrieval, and we show that the model maps most available programmable patterns to the first-harmonic direction in bijection. As a result, the approach can retrieve all of the encoding information through a single measurement. We also optimize the power efficiency of the communication architecture by using cascaded encoding to amplify the far-field radiation exclusively in the harmonic angles. By combining non-recurrent encoding with spatial harmonic retrieval, a programmable metasurface antenna can be created that can approach the theoretical upper limit of the information mapping efficiency.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 2","pages":"179-191"},"PeriodicalIF":33.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01298-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Digitally programmable metasurfaces are of potential use in next-generation mobile communications due to their ability to perform wireless data transmission without digital-to-analogue conversion or frequency mixing. However, communication networks based on programmable metasurfaces currently suffer from relatively low data transmission rates and low information mapping efficiencies (where the transmitted information per unit switching time is much lower than the information that encodes the programmable pattern). Here we report a programmable metasurface antenna that can approach the theoretical upper limit of the information mapping efficiency. Our approach combines non-recurrent encoding with spatial harmonic retrieval, and we show that the model maps most available programmable patterns to the first-harmonic direction in bijection. As a result, the approach can retrieve all of the encoding information through a single measurement. We also optimize the power efficiency of the communication architecture by using cascaded encoding to amplify the far-field radiation exclusively in the harmonic angles. By combining non-recurrent encoding with spatial harmonic retrieval, a programmable metasurface antenna can be created that can approach the theoretical upper limit of the information mapping efficiency.

Abstract Image

Abstract Image

一种接近无线信息映射极限的可编程超表面天线
数字可编程元表面在下一代移动通信中具有潜在的用途,因为它们能够在没有数模转换或频率混合的情况下执行无线数据传输。然而,基于可编程元表面的通信网络目前存在相对较低的数据传输速率和较低的信息映射效率(单位交换时间内传输的信息远低于编码可编程模式的信息)。本文报道了一种可编程的超表面天线,它可以接近信息映射效率的理论上限。我们的方法将非循环编码与空间谐波检索相结合,并且我们表明该模型将大多数可用的可编程模式映射到双射的一谐波方向。因此,该方法可以通过一次测量检索所有的编码信息。我们还通过级联编码优化了通信架构的功率效率,使远场辐射只在谐波角放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信