{"title":"Linear three-uniform hypergraphs with no Berge path of given length","authors":"Ervin Győri , Nika Salia","doi":"10.1016/j.jctb.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Extensions of Erdős-Gallai Theorem for general hypergraphs are well studied. In this work, we prove the extension of Erdős-Gallai Theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an <em>n</em>-vertex 3-uniform linear hypergraph, without a Berge path of length <em>k</em> as a subgraph is at most <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span>. The bound is sharp for infinitely many <em>k</em> and <em>n</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 36-48"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000960","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extensions of Erdős-Gallai Theorem for general hypergraphs are well studied. In this work, we prove the extension of Erdős-Gallai Theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an n-vertex 3-uniform linear hypergraph, without a Berge path of length k as a subgraph is at most for . The bound is sharp for infinitely many k and n.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.