{"title":"On a conjecture of Tokushige for cross-t-intersecting families","authors":"Huajun Zhang , Biao Wu","doi":"10.1016/j.jctb.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Two families of sets <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are called cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. An active problem in extremal set theory is to determine the maximum product of sizes of cross-<em>t</em>-intersecting families. This incorporates the classical Erdős–Ko–Rado (EKR) problem. In the present paper, we prove that if <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-<em>t</em>-intersecting with <span><math><mi>k</mi><mo>≥</mo><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, then <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo><mo>≤</mo><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Moreover, equality holds if and only if <span><math><mi>A</mi><mo>=</mo><mi>B</mi></math></span> is a maximum <em>t</em>-intersecting subfamily of <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>. This confirms a conjecture of Tokushige for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 49-70"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000972","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two families of sets and are called cross-t-intersecting if for all , . An active problem in extremal set theory is to determine the maximum product of sizes of cross-t-intersecting families. This incorporates the classical Erdős–Ko–Rado (EKR) problem. In the present paper, we prove that if and are cross-t-intersecting with and , then . Moreover, equality holds if and only if is a maximum t-intersecting subfamily of . This confirms a conjecture of Tokushige for .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.