On a conjecture of Tokushige for cross-t-intersecting families

IF 1.2 1区 数学 Q1 MATHEMATICS
Huajun Zhang , Biao Wu
{"title":"On a conjecture of Tokushige for cross-t-intersecting families","authors":"Huajun Zhang ,&nbsp;Biao Wu","doi":"10.1016/j.jctb.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Two families of sets <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are called cross-<em>t</em>-intersecting if <span><math><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span>, <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. An active problem in extremal set theory is to determine the maximum product of sizes of cross-<em>t</em>-intersecting families. This incorporates the classical Erdős–Ko–Rado (EKR) problem. In the present paper, we prove that if <span><math><mi>A</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>B</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-<em>t</em>-intersecting with <span><math><mi>k</mi><mo>≥</mo><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, then <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>|</mo><mi>B</mi><mo>|</mo><mo>≤</mo><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Moreover, equality holds if and only if <span><math><mi>A</mi><mo>=</mo><mi>B</mi></math></span> is a maximum <em>t</em>-intersecting subfamily of <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>. This confirms a conjecture of Tokushige for <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 49-70"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000972","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two families of sets A and B are called cross-t-intersecting if |AB|t for all AA, BB. An active problem in extremal set theory is to determine the maximum product of sizes of cross-t-intersecting families. This incorporates the classical Erdős–Ko–Rado (EKR) problem. In the present paper, we prove that if A([n]k) and B([n]k) are cross-t-intersecting with kt3 and n(t+1)(kt+1), then |A||B|(ntkt)2. Moreover, equality holds if and only if A=B is a maximum t-intersecting subfamily of ([n]k). This confirms a conjecture of Tokushige for t3.
关于交叉族的Tokushige猜想
如果对于所有A∈A, B∈B, |A∩B|≥t,则集合A和B的两个族称为交叉t相交。极值集理论中的一个活跃问题是确定交叉族大小的最大积。这包含了经典的Erdős-Ko-Rado (EKR)问题。在本文中,我们证明了如果A、B两种面包车([n]k)在k≥t≥3、n≥(t+1)(k−t+1)时呈t相交,则|A||B|≤(n−tk−t)2。而且,当且仅当A=B是([n]k)的最大t相交子族时,等式成立。这证实了t≥3时Tokushige的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信