{"title":"Unexpected automorphisms in direct product graphs","authors":"Yunsong Gan , Weijun Liu , Binzhou Xia","doi":"10.1016/j.jctb.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>A pair of graphs <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>Σ</mi><mo>)</mo></math></span> is called unstable if their direct product <span><math><mi>Γ</mi><mo>×</mo><mi>Σ</mi></math></span> has automorphisms that do not come from <span><math><mtext>Aut</mtext><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>×</mo><mtext>Aut</mtext><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span>, and such automorphisms are said to be unexpected. In the special case when <span><math><mi>Σ</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the stability of <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is well studied in the literature, where the so-called two-fold automorphisms of the graph Γ have played an important role. As a generalization of two-fold automorphisms, the concept of non-diagonal automorphisms was recently introduced to study the stability of general graph pairs. In this paper, we obtain, for a large family of graph pairs, a necessary and sufficient condition to be unstable in terms of the existence of non-diagonal automorphisms. As a byproduct, we determine the stability of graph pairs involving complete graphs or odd cycles, respectively. The former result in fact solves a problem proposed by Dobson, Miklavič and Šparl for undirected graphs, as well as confirms a recent conjecture of Qin, Xia and Zhou.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 140-164"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562400100X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A pair of graphs is called unstable if their direct product has automorphisms that do not come from , and such automorphisms are said to be unexpected. In the special case when , the stability of is well studied in the literature, where the so-called two-fold automorphisms of the graph Γ have played an important role. As a generalization of two-fold automorphisms, the concept of non-diagonal automorphisms was recently introduced to study the stability of general graph pairs. In this paper, we obtain, for a large family of graph pairs, a necessary and sufficient condition to be unstable in terms of the existence of non-diagonal automorphisms. As a byproduct, we determine the stability of graph pairs involving complete graphs or odd cycles, respectively. The former result in fact solves a problem proposed by Dobson, Miklavič and Šparl for undirected graphs, as well as confirms a recent conjecture of Qin, Xia and Zhou.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.