Intersecting families with covering number three

IF 1.2 1区 数学 Q1 MATHEMATICS
Peter Frankl , Jian Wang
{"title":"Intersecting families with covering number three","authors":"Peter Frankl ,&nbsp;Jian Wang","doi":"10.1016/j.jctb.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>We consider <em>k</em>-graphs on <em>n</em> vertices, that is, <span><math><mi>F</mi><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. A <em>k</em>-graph <span><math><mi>F</mi></math></span> is called intersecting if <span><math><mi>F</mi><mo>∩</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≠</mo><mo>∅</mo></math></span> for all <span><math><mi>F</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi></math></span>. In the present paper we prove that for <span><math><mi>k</mi><mo>≥</mo><mn>7</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi></math></span>, any intersecting <em>k</em>-graph <span><math><mi>F</mi></math></span> with covering number at least three, satisfies <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>3</mn></math></span>, the best possible upper bound which was proved in <span><span>[4]</span></span> subject to exponential constraints <span><math><mi>n</mi><mo>&gt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 96-139"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000984","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider k-graphs on n vertices, that is, F([n]k). A k-graph F is called intersecting if FF for all F,FF. In the present paper we prove that for k7, n2k, any intersecting k-graph F with covering number at least three, satisfies |F|(n1k1)(nkk1)(nk1k1)+(n2kk1)+(nk2k3)+3, the best possible upper bound which was proved in [4] subject to exponential constraints n>n0(k).
与第三个覆盖的家族相交
我们考虑n个顶点上的k个图,即F∧([n]k)。如果F∩F′≠∅对于所有F,F′∈F,一个k图F称为相交图F。本文证明了对于k≥7,n≥2k,任何覆盖数至少为3的相交k图F,满足|F|≤(n−1k−1)- (n−kk−1)- (n−k−1k−1)+(n−2kk−1)+(n−k−2k−3)+3的最佳可能上界,该上界在受指数约束n>;n0(k)的[4]中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信