Obfuscation-resilient detection of Android third-party libraries using multi-scale code dependency fusion

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhao Zhang, Senlin Luo, Yongxin Lu, Limin Pan
{"title":"Obfuscation-resilient detection of Android third-party libraries using multi-scale code dependency fusion","authors":"Zhao Zhang, Senlin Luo, Yongxin Lu, Limin Pan","doi":"10.1016/j.inffus.2024.102908","DOIUrl":null,"url":null,"abstract":"Third-Party Library (TPL) detection is a crucial aspect of Android application security assessment, but it faces significant challenges due to code obfuscation. Existing methods often rely on single-scale features, such as class dependencies or instruction opcodes. This reliance can overlook critical dependencies, leading to incomplete library representation and reduced detection recall. Furthermore, the high similarity between a TPL and its adjacent versions causes overlaps in the feature space, reducing the accuracy of version identification. To address these limitations, we propose LibMD, a multi-scale code dependency fusion approach for TPL detection in Android apps. LibMD enhances library code representation by combining class reference syntax augmentation, cross-scale function mapping, and control flow reconstruction of basic blocks. It also extracts metadata dependencies and constructs a library dependency graph that integrates app-code similarity with multiple libraries. By applying Bayes’ theorem to compute posterior probabilities, LibMD effectively evaluates the likelihood of TPL integration and improves the precision of library version identification. Experimental results demonstrate that LibMD outperforms state-of-the-art methods across diverse datasets, achieving robust TPL detection and accurate version identification, even under various obfuscation techniques.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"73 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102908","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Third-Party Library (TPL) detection is a crucial aspect of Android application security assessment, but it faces significant challenges due to code obfuscation. Existing methods often rely on single-scale features, such as class dependencies or instruction opcodes. This reliance can overlook critical dependencies, leading to incomplete library representation and reduced detection recall. Furthermore, the high similarity between a TPL and its adjacent versions causes overlaps in the feature space, reducing the accuracy of version identification. To address these limitations, we propose LibMD, a multi-scale code dependency fusion approach for TPL detection in Android apps. LibMD enhances library code representation by combining class reference syntax augmentation, cross-scale function mapping, and control flow reconstruction of basic blocks. It also extracts metadata dependencies and constructs a library dependency graph that integrates app-code similarity with multiple libraries. By applying Bayes’ theorem to compute posterior probabilities, LibMD effectively evaluates the likelihood of TPL integration and improves the precision of library version identification. Experimental results demonstrate that LibMD outperforms state-of-the-art methods across diverse datasets, achieving robust TPL detection and accurate version identification, even under various obfuscation techniques.
基于多尺度代码依赖融合的Android第三方库抗混淆检测
第三方库(TPL)检测是Android应用程序安全评估的一个重要方面,但由于代码混淆,它面临着重大挑战。现有的方法通常依赖于单尺度特征,如类依赖或指令操作码。这种依赖可能会忽略关键的依赖关系,导致库表示不完整并减少检测召回。此外,TPL与其相邻版本之间的高相似性会导致特征空间中的重叠,从而降低版本识别的准确性。为了解决这些限制,我们提出了LibMD,一种用于Android应用程序TPL检测的多尺度代码依赖融合方法。LibMD通过结合类引用语法增强、跨尺度函数映射和基本块的控制流重建来增强库代码表示。它还提取元数据依赖关系,并构建一个库依赖关系图,将应用程序代码的相似性与多个库集成在一起。LibMD通过贝叶斯定理计算后验概率,有效地评估了TPL集成的可能性,提高了库版本识别的精度。实验结果表明,即使在各种混淆技术下,LibMD在不同数据集上也优于最先进的方法,实现了鲁棒的TPL检测和准确的版本识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信