Impact of Electrolyte Decomposition on Copper Corrosion in Li6PS5Cl‐Based All‐Solid‐State Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ohmin Kwon, Juhui Kang, Suhyeon Kim, Taeho Yoon
{"title":"Impact of Electrolyte Decomposition on Copper Corrosion in Li6PS5Cl‐Based All‐Solid‐State Batteries","authors":"Ohmin Kwon, Juhui Kang, Suhyeon Kim, Taeho Yoon","doi":"10.1002/adfm.202420474","DOIUrl":null,"url":null,"abstract":"All‐solid‐state batteries (ASSBs) with sulfide‐based electrolytes, such as argyrodite (Li₆PS₅Cl, LPSCl), offer significant advantages regarding safety and energy density. However, conventional Cu current collectors with LPSCl suffer from corrosion, necessitating a deeper understanding of appropriate mechanisms and strategies to address them. This study investigates the impact of electrolyte decomposition on Cu degradation in sulfide‐based ASSBs. Accelerated experiments reveal that LPSCl decomposition forms an ineffective passive layer on Cu, resulting in significant corrosion above 2 V during delithiation. In addition, the corrosion potential implies that sulfide and chlorine species are involved in the corrosion reaction. Comparative analyses with Ni current collectors, which are known for their resistance to the corrosive species, demonstrate superior stability to Cu. Corrosion‐prevention strategies are proposed based on the elucidated mechanisms, with the Pilling–Bedworth ratio explaining why certain metal sulfide layers formed during electrolyte decomposition may fail to effectively prevent corrosion. These insights support the development of targeted protective strategies and alternative current collector materials to enhance the durability and performance of sulfide‐based ASSBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"2 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420474","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All‐solid‐state batteries (ASSBs) with sulfide‐based electrolytes, such as argyrodite (Li₆PS₅Cl, LPSCl), offer significant advantages regarding safety and energy density. However, conventional Cu current collectors with LPSCl suffer from corrosion, necessitating a deeper understanding of appropriate mechanisms and strategies to address them. This study investigates the impact of electrolyte decomposition on Cu degradation in sulfide‐based ASSBs. Accelerated experiments reveal that LPSCl decomposition forms an ineffective passive layer on Cu, resulting in significant corrosion above 2 V during delithiation. In addition, the corrosion potential implies that sulfide and chlorine species are involved in the corrosion reaction. Comparative analyses with Ni current collectors, which are known for their resistance to the corrosive species, demonstrate superior stability to Cu. Corrosion‐prevention strategies are proposed based on the elucidated mechanisms, with the Pilling–Bedworth ratio explaining why certain metal sulfide layers formed during electrolyte decomposition may fail to effectively prevent corrosion. These insights support the development of targeted protective strategies and alternative current collector materials to enhance the durability and performance of sulfide‐based ASSBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信