Amorphous/Crystalline ZrO2 with Oxygen Vacancies Anchored Nano‐Ru Enhance Reverse Hydrogen Spillover in Alkaline Hydrogen Evolution

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-06 DOI:10.1002/smll.202410436
Jidong Niu, Huimei Duan, Tanxu Sun, Zhenhai Zhi, Daohao Li, Xiaokun Fan, Lijie Zhang, Dongjiang Yang
{"title":"Amorphous/Crystalline ZrO2 with Oxygen Vacancies Anchored Nano‐Ru Enhance Reverse Hydrogen Spillover in Alkaline Hydrogen Evolution","authors":"Jidong Niu, Huimei Duan, Tanxu Sun, Zhenhai Zhi, Daohao Li, Xiaokun Fan, Lijie Zhang, Dongjiang Yang","doi":"10.1002/smll.202410436","DOIUrl":null,"url":null,"abstract":"Hydrogen spillover‐based binary (HSBB) system has attracted significant attention in alkaline hydrogen evolution reaction (HER). Accelerating hydrogen spillover in the HSBB system is crucial for the HER activity. Herein, a highly efficient HSBB system is developed by anchoring nano‐Ru on oxygen vacancy (Vo) rich amorphous/crystal ZrO<jats:sub>2</jats:sub>. Theoretical and experimental results reveal that the water molecules dissociate on the Vo of ZrO<jats:sub>2</jats:sub> into protons, which then couple with electrons to form H<jats:sup>*</jats:sup>, and the produced H<jats:sup>*</jats:sup> are spilled over to the nano‐Ru to evolve H<jats:sub>2</jats:sub>. The amorphous regions enhance the adsorption and desorption rates of hydrogen while exposing a greater number of active sites; meanwhile, the Vo significantly reduce the work function of ZrO<jats:sub>2</jats:sub>, facilitates electron transfer from ZrO<jats:sub>2</jats:sub> to Ru, and thereby accelerates hydrogen spillover. As a result, the Ru/ac‐ZrO<jats:sub>2</jats:sub> delivers a low overpotential of 14 mV at 10 mA cm<jats:sup>−2</jats:sup> and a high mass activity of 46.47 A mg<jats:sub>metal</jats:sub><jats:sup>−2</jats:sup> at 300 mV for alkaline HER, bypass those of commercial Pt/C (19 mV and 0.09 A mg<jats:sub>metal</jats:sub><jats:sup>−2</jats:sup>, respectively).","PeriodicalId":228,"journal":{"name":"Small","volume":"48 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410436","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen spillover‐based binary (HSBB) system has attracted significant attention in alkaline hydrogen evolution reaction (HER). Accelerating hydrogen spillover in the HSBB system is crucial for the HER activity. Herein, a highly efficient HSBB system is developed by anchoring nano‐Ru on oxygen vacancy (Vo) rich amorphous/crystal ZrO2. Theoretical and experimental results reveal that the water molecules dissociate on the Vo of ZrO2 into protons, which then couple with electrons to form H*, and the produced H* are spilled over to the nano‐Ru to evolve H2. The amorphous regions enhance the adsorption and desorption rates of hydrogen while exposing a greater number of active sites; meanwhile, the Vo significantly reduce the work function of ZrO2, facilitates electron transfer from ZrO2 to Ru, and thereby accelerates hydrogen spillover. As a result, the Ru/ac‐ZrO2 delivers a low overpotential of 14 mV at 10 mA cm−2 and a high mass activity of 46.47 A mgmetal−2 at 300 mV for alkaline HER, bypass those of commercial Pt/C (19 mV and 0.09 A mgmetal−2, respectively).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信