Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jinglin Zou, Cong Jiang, Qiangsheng Hu, Xinlin Jia, Shuqi Wang, Shiyue Wan, Yuanqing Mao, Dapeng Zhang, Peng Zhang, Bin Dai, Yongsheng Li
{"title":"Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species","authors":"Jinglin Zou, Cong Jiang, Qiangsheng Hu, Xinlin Jia, Shuqi Wang, Shiyue Wan, Yuanqing Mao, Dapeng Zhang, Peng Zhang, Bin Dai, Yongsheng Li","doi":"10.1038/s41467-024-55658-0","DOIUrl":null,"url":null,"abstract":"<p>Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS). It is demonstrated that ROS generated by ZnPP@FQOS is endogenously/exogenously multiply amplified owing to the CAFs remodeling and down-regulation of anti-oxidative stress in cancer cells, ultimately achieving the efficient photodynamic therapy in a female tumor-bearing mouse model. More importantly, ZnPP@FQOS is verified to enable the stimulation of enhanced immune responses and systemic immunity. This strategy remarkably potentiates the efficacy of photodynamic-immunotherapy, thus providing a promising enlightenment for tumor therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55658-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS). It is demonstrated that ROS generated by ZnPP@FQOS is endogenously/exogenously multiply amplified owing to the CAFs remodeling and down-regulation of anti-oxidative stress in cancer cells, ultimately achieving the efficient photodynamic therapy in a female tumor-bearing mouse model. More importantly, ZnPP@FQOS is verified to enable the stimulation of enhanced immune responses and systemic immunity. This strategy remarkably potentiates the efficacy of photodynamic-immunotherapy, thus providing a promising enlightenment for tumor therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信