Sanaa M. Aly , Naoual Sabaouni , Benjamin Hennart , Jean-michel Gaulier , Delphine Allorge
{"title":"Tramadol-related fatalities: Metabolic ratios & SNPs/INDELs belonging to UGT1A8, UGT2B7, ABCC2, and SLC22A1","authors":"Sanaa M. Aly , Naoual Sabaouni , Benjamin Hennart , Jean-michel Gaulier , Delphine Allorge","doi":"10.1016/j.fsigen.2024.103218","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if <em>UGT1A8, UGT2B7, ABCC2, and SLC22A1</em> genotyping can facilitate interpretation by investigating the frequency of <em>UGT1A8, UGT2B7, ABCC2, and SLC22A1</em> genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs. Cases positive for TR (n = 48) were genotyped by HaloPlex Target Enrichment system for <em>UGT1A8, UGT2B7, ABCC2, and SLC22A1</em> sequencing, in order to identify single nucleotide polymorphisms (SNPs) and/or insertion deletion (INDELs). In addition to, the concentrations of TR and its metabolites (M1 & M2) were determined by LC-MS/MS. Cases were categorized by cause of death. The investigated SNPs/INDELs were not overrepresented in any group. We found significant correlations between several loci (12 out of 73) in <em>UGT1A8, ABCC2,</em> and <em>SLC22A1</em> genes and MRs (M2/M1, TR/M2, and TR/M1) in <em>post-mortem</em> TR cases. These results indicate these polymorphisms in the 4 investigated genes might influence TR pharmacokinetics leading to an unsatisfactory therapeutic effect or increasing the risk of toxicity. However, these findings should be supported in future studies with larger groups of cases.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"76 ","pages":"Article 103218"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187249732400214X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs. Cases positive for TR (n = 48) were genotyped by HaloPlex Target Enrichment system for UGT1A8, UGT2B7, ABCC2, and SLC22A1 sequencing, in order to identify single nucleotide polymorphisms (SNPs) and/or insertion deletion (INDELs). In addition to, the concentrations of TR and its metabolites (M1 & M2) were determined by LC-MS/MS. Cases were categorized by cause of death. The investigated SNPs/INDELs were not overrepresented in any group. We found significant correlations between several loci (12 out of 73) in UGT1A8, ABCC2, and SLC22A1 genes and MRs (M2/M1, TR/M2, and TR/M1) in post-mortem TR cases. These results indicate these polymorphisms in the 4 investigated genes might influence TR pharmacokinetics leading to an unsatisfactory therapeutic effect or increasing the risk of toxicity. However, these findings should be supported in future studies with larger groups of cases.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.