Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family.

Yici Lei, Akira Fukunaga, Hiroshi Imai, Ryosuke Yamamoto, Rieko Shimo-Kon, Shinji Kamimura, Kaoru Mitsuoka, Takako Kato-Minoura, Toshiki Yagi, Takahide Kon
{"title":"Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family.","authors":"Yici Lei, Akira Fukunaga, Hiroshi Imai, Ryosuke Yamamoto, Rieko Shimo-Kon, Shinji Kamimura, Kaoru Mitsuoka, Takako Kato-Minoura, Toshiki Yagi, Takahide Kon","doi":"10.1002/cm.21987","DOIUrl":null,"url":null,"abstract":"<p><p>Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the \"phi-particle\" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the "phi-particle" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信