Khyati Raina, Kirti Modak, Chitra Premkumar, Gaurav Joshi, Dhavapriya Palani, Krittika Nandy, Yazhini Sivamani, Shaji R Velayudhan, Rajkumar P Thummer
{"title":"UTF1 Expression is Important for the Generation and Maintenance of Human iPSCs.","authors":"Khyati Raina, Kirti Modak, Chitra Premkumar, Gaurav Joshi, Dhavapriya Palani, Krittika Nandy, Yazhini Sivamani, Shaji R Velayudhan, Rajkumar P Thummer","doi":"10.1007/s12015-024-10836-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.</p><p><strong>Methods: </strong>This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs. We employed episomal vectors for reprogramming UTF1 knockout fibroblasts into iPSCs and analyzed the effects of UTF1 depletion on cellular morphology, pluripotency, and viability through Western blotting, PCR, and flow cytometry. In addition, we integrated an shRNA that downregulated the expression of UTF1 for mechanistic studies to understand the impact of UTF1 depletion in iPSC pluripotency and differentiation.</p><p><strong>Results: </strong>UTF1 knockout resulted in significantly reduced reprogramming efficiency and increased spontaneous differentiation, indicating its crucial role in maintaining human iPSC identity and stability. In knockdown experiments, gradual loss of UTF1 led to change in cellular morphologies and decreased expression of core pluripotency markers OCT4 and SOX2. Interestingly, unlike complete UTF1 knockout, the gradual downregulation of UTF1 in iPSCs did not result in apoptosis, suggesting that the loss of pluripotency can occur independently of the apoptotic pathways.</p><p><strong>Conclusions: </strong>UTF1 is essential for maintaining the pluripotency and viability of human iPSCs. Its depletion affects the fundamental properties of stem cells, underscoring the potential challenges in using UTF1-deficient cells for therapeutic applications. Future studies should explore the mechanistic pathways through which UTF1 controls pluripotency and differentiation, which could provide insights into improving iPSC stability for clinical applications.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10836-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.
Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs. We employed episomal vectors for reprogramming UTF1 knockout fibroblasts into iPSCs and analyzed the effects of UTF1 depletion on cellular morphology, pluripotency, and viability through Western blotting, PCR, and flow cytometry. In addition, we integrated an shRNA that downregulated the expression of UTF1 for mechanistic studies to understand the impact of UTF1 depletion in iPSC pluripotency and differentiation.
Results: UTF1 knockout resulted in significantly reduced reprogramming efficiency and increased spontaneous differentiation, indicating its crucial role in maintaining human iPSC identity and stability. In knockdown experiments, gradual loss of UTF1 led to change in cellular morphologies and decreased expression of core pluripotency markers OCT4 and SOX2. Interestingly, unlike complete UTF1 knockout, the gradual downregulation of UTF1 in iPSCs did not result in apoptosis, suggesting that the loss of pluripotency can occur independently of the apoptotic pathways.
Conclusions: UTF1 is essential for maintaining the pluripotency and viability of human iPSCs. Its depletion affects the fundamental properties of stem cells, underscoring the potential challenges in using UTF1-deficient cells for therapeutic applications. Future studies should explore the mechanistic pathways through which UTF1 controls pluripotency and differentiation, which could provide insights into improving iPSC stability for clinical applications.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.