Sahar Abdelrazek, Lina Rodriguez Salamanca, Boris A Vinatzer
{"title":"Metagenomic Sequencing of Tomato Plants with Wilt Symptoms Allows for Strain-Level Pathogen Identification and Genome-Based Characterization.","authors":"Sahar Abdelrazek, Lina Rodriguez Salamanca, Boris A Vinatzer","doi":"10.1094/PHYTO-09-24-0279-R","DOIUrl":null,"url":null,"abstract":"<p><p>Diseases that affect the vascular system or the pith are of great economic impact since they can rapidly destroy the affected plants, leading to complete loss in production. Fast and precise identification is thus important to inform containment and management, but many identification methods are slow because they are culture-dependent and they do not reach strain resolution. Here we used culture-independent long-read metagenomic sequencing of DNA extracted directly from stems of two tomato samples that displayed wilt symptoms. We obtained enough sequencing reads to assemble high quality metagenome-assembled genomes (MAGs) of <i>Ralstonia solanacearum</i> from one sample and of <i>Pseudomonas corrugata</i> from the other. The genome sequences allowed us to identify both pathogens to strain level using the genomerxiv platform, perform phylogenetic analyses, predict virulence genes, and infer antibiotic and copper resistance. In the case of <i>R. solanacearum</i>, it was straightforward to exclude the pathogen from being the Select Agent Race 3 biovar 2. Using the Branchwater tool, it was also possible to determine the world-wide distribution of both pathogen strains based on public metagenomic sequences. The entire analysis could have been completed within two days starting with sample acquisition. Steps necessary towards establishing metagenomic sequencing as a more routine approach in plant diseases clinics are discussed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-09-24-0279-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diseases that affect the vascular system or the pith are of great economic impact since they can rapidly destroy the affected plants, leading to complete loss in production. Fast and precise identification is thus important to inform containment and management, but many identification methods are slow because they are culture-dependent and they do not reach strain resolution. Here we used culture-independent long-read metagenomic sequencing of DNA extracted directly from stems of two tomato samples that displayed wilt symptoms. We obtained enough sequencing reads to assemble high quality metagenome-assembled genomes (MAGs) of Ralstonia solanacearum from one sample and of Pseudomonas corrugata from the other. The genome sequences allowed us to identify both pathogens to strain level using the genomerxiv platform, perform phylogenetic analyses, predict virulence genes, and infer antibiotic and copper resistance. In the case of R. solanacearum, it was straightforward to exclude the pathogen from being the Select Agent Race 3 biovar 2. Using the Branchwater tool, it was also possible to determine the world-wide distribution of both pathogen strains based on public metagenomic sequences. The entire analysis could have been completed within two days starting with sample acquisition. Steps necessary towards establishing metagenomic sequencing as a more routine approach in plant diseases clinics are discussed.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.