Classification of Irritable Bowel Syndrome Using Brain Functional Connectivity Strength and Machine Learning.

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY
Qi Zhang, Yue Xu, Dingbo Guo, Hua He, Zhen Zhang, Xiaowan Wang, Siyi Yu
{"title":"Classification of Irritable Bowel Syndrome Using Brain Functional Connectivity Strength and Machine Learning.","authors":"Qi Zhang, Yue Xu, Dingbo Guo, Hua He, Zhen Zhang, Xiaowan Wang, Siyi Yu","doi":"10.1111/nmo.14994","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Irritable Bowel Syndrome (IBS) is a prevalent condition characterized by dysregulated brain-gut interactions. Despite its widespread impact, the brain mechanism of IBS remains incompletely understood, and there is a lack of objective diagnostic criteria and biomarkers. This study aims to investigate brain network alterations in IBS patients using the functional connectivity strength (FCS) method and to develop a support vector machine (SVM) classifier for distinguishing IBS patients from healthy controls (HCs).</p><p><strong>Methods: </strong>Thirty-one patients with IBS and thirty age and sex-matched HCs were enrolled in this study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. We applied FCS to assess global brain functional connectivity changes in IBS patients. An SVM-based machine - learning approach was then used to evaluate whether the altered FCS regions could serve as fMRI-based markers for classifying IBS patients and HCs.</p><p><strong>Results: </strong>Compared to the HCs, patients with IBS showed significantly increased FCS in the left medial orbitofrontal cortex (mOFC) and decreased FCS in the bilateral cingulate cortex/precuneus (PCC/Pcu) and middle cingulate cortex (MCC). The machine-learning model achieved a classification accuracy of 91.9% in differentiating IBS patients from HCs.</p><p><strong>Conclusion: </strong>These findings reveal a unique pattern of FCS alterations in brain areas governing pain regulation and emotional processing in IBS patients. The identified abnormal FCS features have the potential to serve as effective biomarkers for IBS classification. This study may contribute to a deeper understanding of the neural mechanisms of IBS and aid in its diagnosis in clinical practice.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e14994"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.14994","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Irritable Bowel Syndrome (IBS) is a prevalent condition characterized by dysregulated brain-gut interactions. Despite its widespread impact, the brain mechanism of IBS remains incompletely understood, and there is a lack of objective diagnostic criteria and biomarkers. This study aims to investigate brain network alterations in IBS patients using the functional connectivity strength (FCS) method and to develop a support vector machine (SVM) classifier for distinguishing IBS patients from healthy controls (HCs).

Methods: Thirty-one patients with IBS and thirty age and sex-matched HCs were enrolled in this study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. We applied FCS to assess global brain functional connectivity changes in IBS patients. An SVM-based machine - learning approach was then used to evaluate whether the altered FCS regions could serve as fMRI-based markers for classifying IBS patients and HCs.

Results: Compared to the HCs, patients with IBS showed significantly increased FCS in the left medial orbitofrontal cortex (mOFC) and decreased FCS in the bilateral cingulate cortex/precuneus (PCC/Pcu) and middle cingulate cortex (MCC). The machine-learning model achieved a classification accuracy of 91.9% in differentiating IBS patients from HCs.

Conclusion: These findings reveal a unique pattern of FCS alterations in brain areas governing pain regulation and emotional processing in IBS patients. The identified abnormal FCS features have the potential to serve as effective biomarkers for IBS classification. This study may contribute to a deeper understanding of the neural mechanisms of IBS and aid in its diagnosis in clinical practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurogastroenterology and Motility
Neurogastroenterology and Motility 医学-临床神经学
CiteScore
7.80
自引率
8.60%
发文量
178
审稿时长
3-6 weeks
期刊介绍: Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信