Individual variability in the phenology of an asynchronous penguin species induces consequences on breeding and carry-over effects.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Nicolas Joly, Andre Chiaradia, Jean-Yves Georges, Claire Saraux
{"title":"Individual variability in the phenology of an asynchronous penguin species induces consequences on breeding and carry-over effects.","authors":"Nicolas Joly, Andre Chiaradia, Jean-Yves Georges, Claire Saraux","doi":"10.1007/s00442-024-05644-6","DOIUrl":null,"url":null,"abstract":"<p><p>Phenology is a major component of animals' breeding, as they need to adjust their breeding timing to match optimal environmental conditions. While the effects of shifting phenology are well-studied on populations, few studies emphasise its ecological causes and consequences at the inter-individual level. Using a 20-year monitoring of more than 2500 breeding events from ~ 500 breeding little penguins (Eudyptula minor), a very asynchronously breeding seabird, we investigated the consequences of late breeding on present and next breeding events. We found that individuals breeding later had reduced breeding success, lighter chicks at fledging, lower probability of laying a second clutch, and decreased parents' post-breeding body condition. Importantly, we found important cycling effects where delayed breeding during a given year led to significantly later laying date, lower breeding probability and lower breeding success when they breed during the next season, suggesting potential carry-over effects from one season to the next. To further understand the causes of such variability in phenology while earlier breeding is associated with better individual fitness, we aimed to assess intrinsic differences amongst individuals. We showed that the heterogeneity in breeding timing was partly fixed, the laying date being a significantly repeatable behaviour (17%), asking for more studies on heritability or early-development effects. This extensive study highlights the combined roles of carry-over effects and intrinsic differences on individual phenology, with important implications on breeding capacity through life.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"16"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05644-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenology is a major component of animals' breeding, as they need to adjust their breeding timing to match optimal environmental conditions. While the effects of shifting phenology are well-studied on populations, few studies emphasise its ecological causes and consequences at the inter-individual level. Using a 20-year monitoring of more than 2500 breeding events from ~ 500 breeding little penguins (Eudyptula minor), a very asynchronously breeding seabird, we investigated the consequences of late breeding on present and next breeding events. We found that individuals breeding later had reduced breeding success, lighter chicks at fledging, lower probability of laying a second clutch, and decreased parents' post-breeding body condition. Importantly, we found important cycling effects where delayed breeding during a given year led to significantly later laying date, lower breeding probability and lower breeding success when they breed during the next season, suggesting potential carry-over effects from one season to the next. To further understand the causes of such variability in phenology while earlier breeding is associated with better individual fitness, we aimed to assess intrinsic differences amongst individuals. We showed that the heterogeneity in breeding timing was partly fixed, the laying date being a significantly repeatable behaviour (17%), asking for more studies on heritability or early-development effects. This extensive study highlights the combined roles of carry-over effects and intrinsic differences on individual phenology, with important implications on breeding capacity through life.

一个非同步企鹅物种物候的个体变异会对繁殖和携带效应产生影响。
物候学是动物繁殖的一个重要组成部分,因为它们需要调整自己的繁殖时间来匹配最佳的环境条件。虽然物候变化对种群的影响已经得到了充分的研究,但很少有研究强调其在个体间水平上的生态原因和后果。通过对约500只小企鹅(Eudyptula minor) 20年的2500多次繁殖事件的监测,研究了延迟繁殖对当前和未来繁殖事件的影响。我们发现,晚育个体的繁殖成功率降低,雏鸟羽化较轻,第二窝产蛋的概率较低,父母的繁殖后身体状况也较差。重要的是,我们发现了重要的循环效应,即在给定年份延迟繁殖导致在下一季节繁殖时产卵日期明显推迟,繁殖概率降低和繁殖成功率降低,这表明从一个季节到下一个季节可能存在结转效应。为了进一步了解这种物候差异的原因,而早期繁殖与更好的个体适应性相关,我们旨在评估个体之间的内在差异。我们发现繁殖时间的异质性在一定程度上是固定的,产卵日期是一个显著的可重复行为(17%),需要更多的遗传性或早期发育效应的研究。这项广泛的研究强调了携带效应和内在差异对个体物候的综合作用,对终生的繁殖能力具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信