Orthology inference at scale with FastOMA

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Sina Majidian, Yannis Nevers, Ali Yazdizadeh Kharrazi, Alex Warwick Vesztrocy, Stefano Pascarelli, David Moi, Natasha Glover, Adrian M. Altenhoff, Christophe Dessimoz
{"title":"Orthology inference at scale with FastOMA","authors":"Sina Majidian, Yannis Nevers, Ali Yazdizadeh Kharrazi, Alex Warwick Vesztrocy, Stefano Pascarelli, David Moi, Natasha Glover, Adrian M. Altenhoff, Christophe Dessimoz","doi":"10.1038/s41592-024-02552-8","DOIUrl":null,"url":null,"abstract":"The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, ‘FastOMA’ provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ . FastOMA achieves fast and accurate orthology inference, with linear scalability.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 2","pages":"269-272"},"PeriodicalIF":36.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02552-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02552-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, ‘FastOMA’ provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ . FastOMA achieves fast and accurate orthology inference, with linear scalability.

Abstract Image

使用FastOMA进行大规模的正交推理。
基因组数据的激增,正在进行的努力旨在在十年内对1.5亿个真核生物进行测序,可能会彻底改变基因组学,揭示生物过程的起源,进化和遗传创新。然而,传统的基因组学方法在处理如此大的数据集时规模性很差。在这里,“FastOMA”解决了这个问题,为同源推断提供了线性可扩展性,能够在一天内处理数千个真核生物基因组。FastOMA在基准测试中保持了完善的正交矩阵(OMA)方法的高精度和高分辨率。FastOMA可通过GitHub在https://github.com/DessimozLab/FastOMA/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信