Universal receptive system as a novel regulator of transcriptomic activity of Staphylococcus aureus.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
George Tetz, Kristina Kardava, Maria Vecherkovskaya, Alireza Khodadadi-Jamayran, Aristotelis Tsirigos, Victor Tetz
{"title":"Universal receptive system as a novel regulator of transcriptomic activity of Staphylococcus aureus.","authors":"George Tetz, Kristina Kardava, Maria Vecherkovskaya, Alireza Khodadadi-Jamayran, Aristotelis Tsirigos, Victor Tetz","doi":"10.1186/s12934-024-02637-1","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus, 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"1"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02637-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus, 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.

通用接受系统作为金黄色葡萄球菌转录组活性的新调控因子。
我们之前的研究揭示了普遍接受系统的存在,它调节细胞与环境之间的相互作用。该系统由存在于原核和真核细胞表面的基于DNA和rna的teazzed受体(TezRs)以及整合酶和重组酶组成。在当前的研究中,我们旨在进一步了解TezR在金黄色葡萄球菌基因转录中的调控作用及其缺失。为此,在破坏TezRs后,对金黄色葡萄球菌MSSA VT209进行了转录组学分析。分别从核酸酶处理和未处理的金黄色葡萄球菌MSSA VT209中提取细菌RNA样本。在破坏金黄色葡萄球菌DNA-、RNA-或DNA-和RNA-组合的TezRs后,分别有103、150和93个基因的表达显著不同。分析揭示了不同TezRs缺失后基因表达的差异聚类,突出了DNA和rna为基础的TezRs缺失后的个体细胞反应。KEGG通路基因富集分析显示,TezR失活后表达上调最多的通路包括与能量代谢、细胞壁代谢和分泌系统相关的通路。一些遗传途径与抑制生物膜形成和增加抗生素耐药性有关,我们通过体外研究在表型水平上证实了这一点。本研究的结果增加了另一个证据,即普遍接受系统在细胞调节中起重要作用,包括细胞对临床重要病原体的环境因素的反应,以及基于核酸的TezRs是外生物组的功能活跃部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信