Local structural-functional coupling with counterfactual explanations for epilepsy prediction.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Jiashuang Huang, Shaolong Wei, Zhen Gao, Shu Jiang, Mingliang Wang, Liang Sun, Weiping Ding, Daoqiang Zhang
{"title":"Local structural-functional coupling with counterfactual explanations for epilepsy prediction.","authors":"Jiashuang Huang, Shaolong Wei, Zhen Gao, Shu Jiang, Mingliang Wang, Liang Sun, Weiping Ding, Daoqiang Zhang","doi":"10.1016/j.neuroimage.2024.120978","DOIUrl":null,"url":null,"abstract":"<p><p>The structural-functional brain connections coupling (SC-FC coupling) describes the relationship between white matter structural connections (SC) and the corresponding functional activation or functional connections (FC). It has been widely used to identify brain disorders. However, the existing research on SC-FC coupling focuses on global and regional scales, and few studies have investigated the impact of brain disorders on this relationship from the perspective of multi-brain region cooperation (i.e., local scale). Here, we propose the local SC-FC coupling pattern for brain disorders prediction. Compared with previous methods, the proposed patterns quantify the relationship between SC and FC in terms of subgraphs rather than whole connections or single brain regions. Specifically, we first construct structural and functional connections using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) data, subsequently organizing them into a multimodal brain network. Then, we extract subgraphs from these multimodal brain networks and select them based on their frequencies to generate local SC-FC coupling patterns. Finally, we employ these patterns to identify brain disorders while refining abnormal patterns to generate counterfactual explanations. Results on a real epilepsy dataset suggest that the proposed method not only outperforms existing methods in accuracy but also provides insights into the local SC-FC coupling pattern and their changes in brain disorders. Code available at https://github.com/UAIBC-Brain/Local-SC-FC-coupling-pattern.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120978"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120978","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The structural-functional brain connections coupling (SC-FC coupling) describes the relationship between white matter structural connections (SC) and the corresponding functional activation or functional connections (FC). It has been widely used to identify brain disorders. However, the existing research on SC-FC coupling focuses on global and regional scales, and few studies have investigated the impact of brain disorders on this relationship from the perspective of multi-brain region cooperation (i.e., local scale). Here, we propose the local SC-FC coupling pattern for brain disorders prediction. Compared with previous methods, the proposed patterns quantify the relationship between SC and FC in terms of subgraphs rather than whole connections or single brain regions. Specifically, we first construct structural and functional connections using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) data, subsequently organizing them into a multimodal brain network. Then, we extract subgraphs from these multimodal brain networks and select them based on their frequencies to generate local SC-FC coupling patterns. Finally, we employ these patterns to identify brain disorders while refining abnormal patterns to generate counterfactual explanations. Results on a real epilepsy dataset suggest that the proposed method not only outperforms existing methods in accuracy but also provides insights into the local SC-FC coupling pattern and their changes in brain disorders. Code available at https://github.com/UAIBC-Brain/Local-SC-FC-coupling-pattern.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信