Fast EEG/MEG BEM-based forward problem solution for high-resolution head models.

IF 4.7 2区 医学 Q1 NEUROIMAGING
NeuroImage Pub Date : 2025-02-01 Epub Date: 2025-01-01 DOI:10.1016/j.neuroimage.2024.120998
William A Wartman, Guillermo Nuñez Ponasso, Zhen Qi, Jens Haueisen, Burkhard Maess, Thomas R Knösche, Konstantin Weise, Gregory M Noetscher, Tommi Raij, Sergey N Makaroff
{"title":"Fast EEG/MEG BEM-based forward problem solution for high-resolution head models.","authors":"William A Wartman, Guillermo Nuñez Ponasso, Zhen Qi, Jens Haueisen, Burkhard Maess, Thomas R Knösche, Konstantin Weise, Gregory M Noetscher, Tommi Raij, Sergey N Makaroff","doi":"10.1016/j.neuroimage.2024.120998","DOIUrl":null,"url":null,"abstract":"<p><p>A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation. The forward method is validated by comparison against an analytical solution on a spherical shell model as well as comparison against a full h-refinement method on realistic 1M facet human head models, both of which yield agreement to within 5 % for the EEG skin potential and MEG magnetic fields. The method is further applied to an EEG source localization (inverse) problem for real human data, and a reasonable source dipole distribution is found.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120998"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation. The forward method is validated by comparison against an analytical solution on a spherical shell model as well as comparison against a full h-refinement method on realistic 1M facet human head models, both of which yield agreement to within 5 % for the EEG skin potential and MEG magnetic fields. The method is further applied to an EEG source localization (inverse) problem for real human data, and a reasonable source dipole distribution is found.

基于快速EEG/MEG bem的高分辨率头部模型前向问题求解。
针对现代高分辨率头部模型的脑磁图正演问题,提出了一种快速边界元法。该方法利用快速多极法(BEM- fmm)加速的基于电荷的边界元,并采用接近奇异偶极源的自适应网格预精化方法(称为b-精化)。不需要昂贵的矩阵填充或标准BEM典型的直接解决步骤;该方法在使用常规工作站进行初始模型组装后90秒内为高分辨率头部模型产生皮肤电压和MEG磁场。将正演方法与球壳模型的解析解和1M面真实人头模型的全h精化方法进行比较,验证了正演方法的正确性,两者的脑电皮肤电位和脑磁图磁场的一致性都在5%以内。将该方法进一步应用于真实人体数据的脑电信号源定位(逆)问题,得到了一个合理的源偶极子分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信