Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bu-Soo Park, Jihee Yoon, Jun-Min Lee, Sang-Hyeok Cho, Yoojeong Choi, Byung-Kwan Cho, Min-Kyu Oh
{"title":"Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.","authors":"Bu-Soo Park, Jihee Yoon, Jun-Min Lee, Sang-Hyeok Cho, Yoojeong Choi, Byung-Kwan Cho, Min-Kyu Oh","doi":"10.1186/s12934-024-02620-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.</p><p><strong>Results: </strong>The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium.</p><p><strong>Conclusions: </strong>The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"2"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02620-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

Results: The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium.

Conclusions: The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.

巨孢酵母2′-焦酰基乳糖生产的代谢工程。
背景:2′-焦酰基乳糖(2′- fl)是一种主要的人乳低聚糖,可显著改善婴儿营养和免疫健康。本研究利用公认安全(GRAS)微生物菌株Priestia megaterium ATCC 14581,解决了安全经济生产2′-FL的需求。选择该菌株的原因是其强劲的生长和建立的安全性以及适合工业规模生产的属性。结果:工程目标包括缺失lacZ基因以防止乳糖代谢干扰,引入非致病性菌株衍生的α-1,2-聚焦转移酶,以及通过过表达manA和manC来优化GDP-L-聚焦生物合成途径。这些变化,再加上通过随机诱变提高乳糖的吸收和利用,导致了饲料分批发酵中2'-FL的产量高达28.6 g/L,突出了我们在megaterium上的代谢工程策略的潜力。结论:通过一系列的遗传修饰和代谢途径优化,成功地改造了GRAS菌株ATCC 14581,使其过量生产2′-FL,这是一种有价值的人乳低聚糖。这项工作强调了利用GRAS菌株生产低聚糖的可行性,为更安全、更有效的生物技术应用铺平了道路。未来的研究可以进一步探索菌株的遗传修饰和发酵条件的优化,以进一步提高2'-FL的产量和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信