The effects of the gut bacterial product, gassericin A, on obesity in mice.

IF 3.9 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Valeh Mahdavi, Hamid Reza Kazerani, Fereidoun Taghizad, Hedyeh Balaei
{"title":"The effects of the gut bacterial product, gassericin A, on obesity in mice.","authors":"Valeh Mahdavi, Hamid Reza Kazerani, Fereidoun Taghizad, Hedyeh Balaei","doi":"10.1186/s12944-024-02423-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.</p><p><strong>Methods: </strong>Fifty Swiss NIH mice were randomly assigned to five different groups. One group was given a standard diet, while the remaining groups were fed a diet high in fat and sugar. The test groups received gassericin A at doses of 0.75, 1.5, or 3 mIU/kg through intraperitoneal injection, daily for 10 weeks. Body weight, fasting blood sugar, serum lipid profile, and hepatic function indicators were then assessed. Additionally, the blood profile, markers of oxidative stress, and expression levels of specific genes associated with obesity, Zfp423, and Fabp4, were evaluated in abdominal adipose tissue.</p><p><strong>Results: </strong>A high-calorie diet negatively impacted abdominal fat, serum cholesterol, LDL, and hepatic enzymes. However, gassericin A significantly improved these effects, despite increasing weight gain and abdominal fat. Furthermore, it improved redox status, downregulated the Zfp423 gene, and enhanced the expression of the Fabp4 gene. Finally, the bacteriocin caused thrombocytopenia and mild decreases in erythrocytes, hematocrit, and hemoglobin levels.</p><p><strong>Conclusions: </strong>These results suggest that, despite causing weight gain, gassericin A may improve obesity-related complications.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"24 1","pages":"3"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-024-02423-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups. One group was given a standard diet, while the remaining groups were fed a diet high in fat and sugar. The test groups received gassericin A at doses of 0.75, 1.5, or 3 mIU/kg through intraperitoneal injection, daily for 10 weeks. Body weight, fasting blood sugar, serum lipid profile, and hepatic function indicators were then assessed. Additionally, the blood profile, markers of oxidative stress, and expression levels of specific genes associated with obesity, Zfp423, and Fabp4, were evaluated in abdominal adipose tissue.

Results: A high-calorie diet negatively impacted abdominal fat, serum cholesterol, LDL, and hepatic enzymes. However, gassericin A significantly improved these effects, despite increasing weight gain and abdominal fat. Furthermore, it improved redox status, downregulated the Zfp423 gene, and enhanced the expression of the Fabp4 gene. Finally, the bacteriocin caused thrombocytopenia and mild decreases in erythrocytes, hematocrit, and hemoglobin levels.

Conclusions: These results suggest that, despite causing weight gain, gassericin A may improve obesity-related complications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lipids in Health and Disease
Lipids in Health and Disease 生物-生化与分子生物学
CiteScore
7.70
自引率
2.20%
发文量
122
审稿时长
3-8 weeks
期刊介绍: Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds. Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信