Establishment of the REMBAC-cassette, a rapid, efficient and manifold BacMam tool for recombinant protein expression.

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Manuel Reithofer, Sophie Huber, Reingard Grabherr
{"title":"Establishment of the REMBAC-cassette, a rapid, efficient and manifold BacMam tool for recombinant protein expression.","authors":"Manuel Reithofer, Sophie Huber, Reingard Grabherr","doi":"10.1016/j.jbiotec.2024.12.011","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells. In our study, we aim to develop a high expression cassette to increase yields of baculoviral transduction. The establishment follows a sequential approach by first identifying the strongest promoter, followed by intron and WPRE sequences as enhancer elements for transcription and translation. The resulting REMBAC-cassette was compared to conventional transfection in suspension and adherent cells. Irrespective of the cell line, transduction reached nearly 100 % efficiency and led to almost 10-fold increases of gene expression levels. We confirmed these results in larger scale with batch and fed-batch cultivations. Finally, expression of different soluble proteins with high degrees of complexity confirmed the versatility of our established cassette. Overall, the REMBAC-cassette incorporated into the BacMam platform is a manifold tool offering advantages over standard transfection, in the scalability, efficiency and gene expression, which results in higher yields, shorter cultivation times and consequently cost-effective production processes.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"183-192"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.12.011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells. In our study, we aim to develop a high expression cassette to increase yields of baculoviral transduction. The establishment follows a sequential approach by first identifying the strongest promoter, followed by intron and WPRE sequences as enhancer elements for transcription and translation. The resulting REMBAC-cassette was compared to conventional transfection in suspension and adherent cells. Irrespective of the cell line, transduction reached nearly 100 % efficiency and led to almost 10-fold increases of gene expression levels. We confirmed these results in larger scale with batch and fed-batch cultivations. Finally, expression of different soluble proteins with high degrees of complexity confirmed the versatility of our established cassette. Overall, the REMBAC-cassette incorporated into the BacMam platform is a manifold tool offering advantages over standard transfection, in the scalability, efficiency and gene expression, which results in higher yields, shorter cultivation times and consequently cost-effective production processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信