Julia van Beesel, Stephanie Melillo, Evie Vereecke
{"title":"3D reconstruction of shoulder muscles in hominoid primates: Correlating scapular attachment areas with muscle volume.","authors":"Julia van Beesel, Stephanie Melillo, Evie Vereecke","doi":"10.1111/joa.14199","DOIUrl":null,"url":null,"abstract":"<p><p>Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids. Additionally, we investigate whether muscle origin area, as a dissection-based observation, can reliably predict muscle volume. Our findings reveal that surface scans provide sufficient coverage to accurately reproduce the in situ volumes of the rotator cuff muscles. However, the volume of the teres major was estimated less reliably, suggesting that muscles with less distinct skeletal boundaries may present challenges for accurate reconstruction. Future studies will explore whether such muscles can be reconstructed with greater precision. Furthermore, we identify a significant correlation between the origin area and muscle volume for the supraspinatus, infraspinatus, and subscapularis muscles. These results suggest that muscle origin area can serve as a reliable predictor of muscle volume, offering a skeletal indicator for estimating muscle size in both extant and extinct hominoids. These insights are particularly valuable for paleontological reconstructions, where direct soft tissue evidence is often lacking. By establishing a relationship between skeletal traits and muscle volume, our study provides a framework for evaluating the accuracy of soft tissue reconstructions in hominoid species. This approach not only enhances our understanding of hominoid anatomy but also offers new avenues for exploring the functional morphology of extinct taxa.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids. Additionally, we investigate whether muscle origin area, as a dissection-based observation, can reliably predict muscle volume. Our findings reveal that surface scans provide sufficient coverage to accurately reproduce the in situ volumes of the rotator cuff muscles. However, the volume of the teres major was estimated less reliably, suggesting that muscles with less distinct skeletal boundaries may present challenges for accurate reconstruction. Future studies will explore whether such muscles can be reconstructed with greater precision. Furthermore, we identify a significant correlation between the origin area and muscle volume for the supraspinatus, infraspinatus, and subscapularis muscles. These results suggest that muscle origin area can serve as a reliable predictor of muscle volume, offering a skeletal indicator for estimating muscle size in both extant and extinct hominoids. These insights are particularly valuable for paleontological reconstructions, where direct soft tissue evidence is often lacking. By establishing a relationship between skeletal traits and muscle volume, our study provides a framework for evaluating the accuracy of soft tissue reconstructions in hominoid species. This approach not only enhances our understanding of hominoid anatomy but also offers new avenues for exploring the functional morphology of extinct taxa.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.