Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Russell D C Bicknell, Nicolás E Campione, Glenn A Brock, John R Paterson
{"title":"Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals.","authors":"Russell D C Bicknell, Nicolás E Campione, Glenn A Brock, John R Paterson","doi":"10.1016/j.cub.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup> Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses.<sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup> The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.<sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup><sup>,</sup><sup>23</sup><sup>,</sup><sup>24</sup><sup>,</sup><sup>25</sup><sup>,</sup><sup>26</sup><sup>,</sup><sup>27</sup> A Cambrian arms race is typically discussed on a macroevolutionary scale, particularly in the context of escalation.<sup>12</sup><sup>,</sup><sup>27</sup><sup>,</sup><sup>28</sup><sup>,</sup><sup>29</sup> Despite abundant fossils demonstrating early Cambrian predation, empirical evidence of adaptive responses to predations is lacking. To explore the Cambrian arms race hypothesis, we assessed a large sample of organophosphatic sclerites of the tommotiid Lapworthella fasciculata from a lower Cambrian carbonate succession in South Australia,<sup>30</sup><sup>,</sup><sup>31</sup><sup>,</sup><sup>32</sup> >200 of which show holes made by a perforating predator.<sup>33</sup><sup>,</sup><sup>34</sup> Critically, the frequency of perforated sclerites increases over time, with a combination of time-series analyses and generalized linear models suggesting a positive correlation with sclerite thickness. These observations reflect a population-level adaptive response in L. fasciculata and the oldest known microevolutionary arms race between predator and prey. Propagation of such interactions across early Cambrian ecosystems likely resulted in the proliferation of biomineralizing taxa with enhanced defenses, illustrating the importance of predation as a major ecological driver of early animal evolution.<sup>12</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>20</sup><sup>,</sup><sup>35</sup>.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.12.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time.1,2,3,4,5,6,7,8 Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses.9,10,11 The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 A Cambrian arms race is typically discussed on a macroevolutionary scale, particularly in the context of escalation.12,27,28,29 Despite abundant fossils demonstrating early Cambrian predation, empirical evidence of adaptive responses to predations is lacking. To explore the Cambrian arms race hypothesis, we assessed a large sample of organophosphatic sclerites of the tommotiid Lapworthella fasciculata from a lower Cambrian carbonate succession in South Australia,30,31,32 >200 of which show holes made by a perforating predator.33,34 Critically, the frequency of perforated sclerites increases over time, with a combination of time-series analyses and generalized linear models suggesting a positive correlation with sclerite thickness. These observations reflect a population-level adaptive response in L. fasciculata and the oldest known microevolutionary arms race between predator and prey. Propagation of such interactions across early Cambrian ecosystems likely resulted in the proliferation of biomineralizing taxa with enhanced defenses, illustrating the importance of predation as a major ecological driver of early animal evolution.12,14,20,35.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信