Exploring Relevant Features for EEG-Based Investigation of Sound Perception in Naturalistic Soundscapes.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-01-17 Print Date: 2025-01-01 DOI:10.1523/ENEURO.0287-24.2024
Thorge Haupt, Marc Rosenkranz, Martin G Bleichner
{"title":"Exploring Relevant Features for EEG-Based Investigation of Sound Perception in Naturalistic Soundscapes.","authors":"Thorge Haupt, Marc Rosenkranz, Martin G Bleichner","doi":"10.1523/ENEURO.0287-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive analysis of everyday sound perception can be achieved using electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram. Using continuous data analysis, we contrast different features in terms of their predictive power for unseen data and thus their distinct contributions to explaining neural data. For this, we analyze data from a complex audio-visual motor task using a naturalistic soundscape. The results demonstrated that the feature sets that explain the most neural variability were a combination of highly detailed acoustic features with a comprehensive description of specific sound onsets. Furthermore, it showed that established features can be applied to complex soundscapes. Crucially, the outcome hinged on excluding periods devoid of sound onsets in the analysis in the case of the discrete features. Our study highlights the importance to comprehensively describe the soundscape, using acoustic and non-acoustic aspects, to fully understand the dynamics of sound perception in complex situations. This approach can serve as a foundation for future studies aiming to investigate sound perception in natural settings.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0287-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive analysis of everyday sound perception can be achieved using electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram. Using continuous data analysis, we contrast different features in terms of their predictive power for unseen data and thus their distinct contributions to explaining neural data. For this, we analyze data from a complex audio-visual motor task using a naturalistic soundscape. The results demonstrated that the feature sets that explain the most neural variability were a combination of highly detailed acoustic features with a comprehensive description of specific sound onsets. Furthermore, it showed that established features can be applied to complex soundscapes. Crucially, the outcome hinged on excluding periods devoid of sound onsets in the analysis in the case of the discrete features. Our study highlights the importance to comprehensively describe the soundscape, using acoustic and non-acoustic aspects, to fully understand the dynamics of sound perception in complex situations. This approach can serve as a foundation for future studies aiming to investigate sound perception in natural settings.

探索基于脑电图的自然声景中声音感知研究的相关特征。
使用脑电图(EEG)可以实现对日常声音感知的全面分析,同时获取有关环境的信息。虽然广泛的研究致力于语音感知,但日常环境中听觉感知的复杂性,特别是信息的类型和提取的关键特征,仍然很少被探索。我们的研究旨在系统地研究不同特征类别的相关性:离散声音身份标记、一般认知状态信息和声学表征,包括离散声音开始、包络和梅尔谱图。使用连续数据分析,我们对比了不同的特征对未见数据的预测能力,从而对解释神经数据做出了不同的贡献。为此,我们分析了使用自然音景的复杂视听运动任务的数据。结果表明,解释最多神经变异的特征集是高度详细的声学特征与特定声音发作的全面描述的结合。此外,它还表明,已建立的特征可以应用于复杂的声景。至关重要的是,在离散特征的情况下,结果取决于排除分析中没有声音发作的时期。我们的研究强调了综合描述声景的重要性,使用声学和非声学方面,以充分理解复杂情况下声音感知的动态。这种方法可以作为未来研究自然环境下声音感知的基础。这项研究是我们更广泛的研究努力的重要一步,旨在了解日常生活中的声音感知。虽然是在一个固定的环境中进行的,但这项研究为了解并发神经反应提供了必要的环境信息的基础见解。我们深入研究了各种声学特征、声音识别标签和认知信息的分析,目的是改进与声音感知相关的神经模型。我们的发现特别强调了对复杂音景进行彻底分析和描述的必要性。我们的研究为未来在各种环境下的声音感知研究提供了关键的考虑因素,从实验室环境到移动脑电图技术,并为研究更自然的环境铺平了道路,推动了听觉神经科学领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信