Hypo-osmotic stress shifts transcription of circadian genes.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Androniqi Qifti, Ayobami Adeeko, Madison Rennie, Elizabeth McGlaughlin, David McKinnon, Barbara Rosati, Suzanne Scarlata
{"title":"Hypo-osmotic stress shifts transcription of circadian genes.","authors":"Androniqi Qifti, Ayobami Adeeko, Madison Rennie, Elizabeth McGlaughlin, David McKinnon, Barbara Rosati, Suzanne Scarlata","doi":"10.1016/j.bpj.2024.12.027","DOIUrl":null,"url":null,"abstract":"<p><p>Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypo-osmotic stress for 12 hours, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 hours and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 down-regulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell cycle progression through caveolae deformation.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypo-osmotic stress for 12 hours, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 hours and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 down-regulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell cycle progression through caveolae deformation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信