Deciphering the mechanisms of action underlying probiotic properties of Shouchella clausii by a functional genomics approach.

IF 3 4区 医学 Q2 MICROBIOLOGY
A Lashermes, E Mathieu, L Marinelli, V Léjard, E Dervyn, C Martin-Gallausiaux, M Jules, N Lapaque, J Doré, M-C Multon, D M Greifenberg, M Plomer, Z Righetto, M Perez Iii, H M Blottière
{"title":"Deciphering the mechanisms of action underlying probiotic properties of Shouchella clausii by a functional genomics approach.","authors":"A Lashermes, E Mathieu, L Marinelli, V Léjard, E Dervyn, C Martin-Gallausiaux, M Jules, N Lapaque, J Doré, M-C Multon, D M Greifenberg, M Plomer, Z Righetto, M Perez Iii, H M Blottière","doi":"10.1163/18762891-bja00050","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea. Several studies have demonstrated that S. clausii treatment modulated inflammatory and immune responses, as well as gut barrier functions. A functional genomic strategy was implemented to decipher the mechanisms by which S. clausii exerts its probiotic effects on human intestinal epithelial cells. To do so, a large genomic DNA fragment library was constructed for each of the four strains: O/C, N/R, SIN and T. A high throughput in vitro screening in human epithelial cells was then conducted, using the reporter gene strategy, targeting the nuclear factor kappa B (NF-κB) pathway and interleukin-10 (IL-10) gene expression. After an exhaustive in vitro screening of approximately a thousand clones per library, several clones modulating the NF-κB pathway in the HT-29 reporter cell line were identified. Among clone lysates, 1.1% (O/C), 1.4% (N/R), 2.0% (SIN), and 1.2% (T) were identified as biologically active on immune reporter systems (NF-κB and IL-10 expression). After transposon mutagenesis and a new set of screening and sequencing, 23 coding sequences (CDS) were identified, including one encoding for the glutamine synthetase, associated with NF-κB modulation, and six CDS for IL-10 modulation. The functional genomic strategy that was applied to S. clausii was an original approach to identify gene candidates that may explain the mechanisms of action of probiotics. However, further work is needed to validate the identified leads.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-16"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea. Several studies have demonstrated that S. clausii treatment modulated inflammatory and immune responses, as well as gut barrier functions. A functional genomic strategy was implemented to decipher the mechanisms by which S. clausii exerts its probiotic effects on human intestinal epithelial cells. To do so, a large genomic DNA fragment library was constructed for each of the four strains: O/C, N/R, SIN and T. A high throughput in vitro screening in human epithelial cells was then conducted, using the reporter gene strategy, targeting the nuclear factor kappa B (NF-κB) pathway and interleukin-10 (IL-10) gene expression. After an exhaustive in vitro screening of approximately a thousand clones per library, several clones modulating the NF-κB pathway in the HT-29 reporter cell line were identified. Among clone lysates, 1.1% (O/C), 1.4% (N/R), 2.0% (SIN), and 1.2% (T) were identified as biologically active on immune reporter systems (NF-κB and IL-10 expression). After transposon mutagenesis and a new set of screening and sequencing, 23 coding sequences (CDS) were identified, including one encoding for the glutamine synthetase, associated with NF-κB modulation, and six CDS for IL-10 modulation. The functional genomic strategy that was applied to S. clausii was an original approach to identify gene candidates that may explain the mechanisms of action of probiotics. However, further work is needed to validate the identified leads.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信