Deep eutectic solvent-based green extraction of Strychnos potatorum seed phenolics: Process optimization via response surface methodology and artificial neural network
{"title":"Deep eutectic solvent-based green extraction of Strychnos potatorum seed phenolics: Process optimization via response surface methodology and artificial neural network","authors":"Haroon Iftikhar , Sumia Akram , Noor-ul-Ain Khalid , Dildar Ahmed , Masooma Hyder Khan , Rizwan Ashraf , Muhammad Mushtaq","doi":"10.1016/j.talanta.2024.127443","DOIUrl":null,"url":null,"abstract":"<div><div>The current research focused on extraction optimization of bioactive compounds from <em>Strychnos potatorum</em> seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity). The SPs extracts obtained under optimal conditions (29 min, 40 °C and 30 mL/g of A, B, and C parameters, respectively) had 30.43 mg gallic acid equivalents (GAE)/g of dry weight (DW) TPC, 10.99 mg rutin equivalents (RE)/g DW TFC, 26.16 % antioxidant activity and 46.95 % α-amylase inhibitory activity. For all the outputs, the ANN percentage error was less than the RSM percentage error for the predicted values against the experimentally measured values. The results were further supported by the %AAD (% absolute average deviation) and R<sup>2</sup> values obtained from RSM and ANN methods. The %AAD for TPC, TFC, DPPH, and α-amylase inhibitory activity by RSM was 7.31, 4.80, 4.03, and 4.36, while by ANN, it was 1.18, 3.90, 1.99, and 2.97, respectively. It is worth noting that despite no statistical difference between the two predictive models, ANN gave closer results to the experimental values. Correlation among various response types showed that TPC and TFC were strongly correlated. This research highlights the efficiency of glycerol-sodium acetate DES as an extractant.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"Article 127443"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914024018253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity). The SPs extracts obtained under optimal conditions (29 min, 40 °C and 30 mL/g of A, B, and C parameters, respectively) had 30.43 mg gallic acid equivalents (GAE)/g of dry weight (DW) TPC, 10.99 mg rutin equivalents (RE)/g DW TFC, 26.16 % antioxidant activity and 46.95 % α-amylase inhibitory activity. For all the outputs, the ANN percentage error was less than the RSM percentage error for the predicted values against the experimentally measured values. The results were further supported by the %AAD (% absolute average deviation) and R2 values obtained from RSM and ANN methods. The %AAD for TPC, TFC, DPPH, and α-amylase inhibitory activity by RSM was 7.31, 4.80, 4.03, and 4.36, while by ANN, it was 1.18, 3.90, 1.99, and 2.97, respectively. It is worth noting that despite no statistical difference between the two predictive models, ANN gave closer results to the experimental values. Correlation among various response types showed that TPC and TFC were strongly correlated. This research highlights the efficiency of glycerol-sodium acetate DES as an extractant.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.