Patterns of neuronal synchrony in higher-order networks.

IF 13.7 1区 生物学 Q1 BIOLOGY
Soumen Majhi, Samali Ghosh, Palash Kumar Pal, Suvam Pal, Tapas Kumar Pal, Dibakar Ghosh, Jernej Završnik, Matjaž Perc
{"title":"Patterns of neuronal synchrony in higher-order networks.","authors":"Soumen Majhi, Samali Ghosh, Palash Kumar Pal, Suvam Pal, Tapas Kumar Pal, Dibakar Ghosh, Jernej Završnik, Matjaž Perc","doi":"10.1016/j.plrev.2024.12.013","DOIUrl":null,"url":null,"abstract":"<p><p>Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist. These patterns are thought to resemble pathological states such as schizophrenia and Parkinson's disease, and their emergence is influenced by neuronal dynamics as well as by synaptic connections and network structure. This review integrates the current understanding of how pairwise and higher-order interactions contribute to different synchrony patterns in neuronal networks, providing a comprehensive overview of their role in shaping network dynamics. We explore a broad range of connectivity mechanisms that drive diverse neuronal synchrony patterns, from pairwise long-range temporal interactions and time-delayed coupling to adaptive communication and higher-order, time-varying connections. We cover key neuronal models, including the Hindmarsh-Rose model, the stochastic Hodgkin-Huxley model, the Sherman model, and the photosensitive FitzHugh-Nagumo model. By investigating the emergence and stability of various synchronous states, this review highlights their significance in neurological systems and indicates directions for future research in this rapidly evolving field.</p>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"52 ","pages":"144-170"},"PeriodicalIF":13.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plrev.2024.12.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist. These patterns are thought to resemble pathological states such as schizophrenia and Parkinson's disease, and their emergence is influenced by neuronal dynamics as well as by synaptic connections and network structure. This review integrates the current understanding of how pairwise and higher-order interactions contribute to different synchrony patterns in neuronal networks, providing a comprehensive overview of their role in shaping network dynamics. We explore a broad range of connectivity mechanisms that drive diverse neuronal synchrony patterns, from pairwise long-range temporal interactions and time-delayed coupling to adaptive communication and higher-order, time-varying connections. We cover key neuronal models, including the Hindmarsh-Rose model, the stochastic Hodgkin-Huxley model, the Sherman model, and the photosensitive FitzHugh-Nagumo model. By investigating the emergence and stability of various synchronous states, this review highlights their significance in neurological systems and indicates directions for future research in this rapidly evolving field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Life Reviews
Physics of Life Reviews 生物-生物物理
CiteScore
20.30
自引率
14.50%
发文量
52
审稿时长
8 days
期刊介绍: Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信