Sorghum grain as a bio-template: emerging, cost-effective, and metal-free synthesis of C-doped g-C3N4 for photo-degradation of antibiotic, bisphenol A (BPA), and phenol under solar light irradiation.
{"title":"Sorghum grain as a bio-template: emerging, cost-effective, and metal-free synthesis of C-doped g-C<sub>3</sub>N<sub>4</sub> for photo-degradation of antibiotic, bisphenol A (BPA), and phenol under solar light irradiation.","authors":"Maryam Shirvani, Tianjian Zhang, Yanlong Gu, Mona Hosseini-Sarvari","doi":"10.1007/s11356-024-35868-1","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials. Biological models with unique multi-level structures and morphology can be used to create porous bio-templates to produce hierarchical materials. So, in this work, for the first time, this was achieved by using sorghum grain seeds as a bio-template (natural waste material) and urea as a precursor, through a simple and environmentally friendly method. We believed that natural waste materials with high carbon atom content could be used as both a carbon doping agent and a bio-template, thus improving the physical and optical properties of the resulting materials. In comparison to previous studies on the synthesis of C-doped g-C<sub>3</sub>N<sub>4</sub>, our work offers a greener and more cost-effective approach to synthesis, while also reducing waste material. We succeeded in the photo-degradation of a series of organic pollutants such as phenol, bisphenol A (BPA), and amoxicillin (AMX) in an aqueous solution under solar light illumination.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35868-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials. Biological models with unique multi-level structures and morphology can be used to create porous bio-templates to produce hierarchical materials. So, in this work, for the first time, this was achieved by using sorghum grain seeds as a bio-template (natural waste material) and urea as a precursor, through a simple and environmentally friendly method. We believed that natural waste materials with high carbon atom content could be used as both a carbon doping agent and a bio-template, thus improving the physical and optical properties of the resulting materials. In comparison to previous studies on the synthesis of C-doped g-C3N4, our work offers a greener and more cost-effective approach to synthesis, while also reducing waste material. We succeeded in the photo-degradation of a series of organic pollutants such as phenol, bisphenol A (BPA), and amoxicillin (AMX) in an aqueous solution under solar light illumination.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.