{"title":"Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.","authors":"Sinjini Das, Gowramma Byran, Kaushik Biswas, Kalirajan Rajagopal","doi":"10.2174/0115680096329753241015114119","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis. Its dysregulation contributes to cancer development. Targeting tankyrase within this pathway holds the potential for inhibiting aberrant cell growth and promoting programmed cell death, offering a promising avenue for cancer treatment. ADP-ribosylation, a reversible process, modifies proteins post-synthesis, regulating diverse cellular signaling pathways. Transferase enzymes like mono and poly(ADP- ribosyl) transferases transfer ADP-ribose from NAD+ to specific amino acid side chains or ADP-ribose units on target proteins. Blocking tankyrase has emerged as a promising strategy in cancer treatment. This article reviews recent advancements in developing novel tankyrase inhibitors. It delves into structure-activity relationships, molecular docking, polypharmacology profiles, and binding mechanisms at the active site. Insights into lead structure development aid in designing potent anti-cancer medications, shedding light on promising avenues in cancer therapy.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096329753241015114119","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis. Its dysregulation contributes to cancer development. Targeting tankyrase within this pathway holds the potential for inhibiting aberrant cell growth and promoting programmed cell death, offering a promising avenue for cancer treatment. ADP-ribosylation, a reversible process, modifies proteins post-synthesis, regulating diverse cellular signaling pathways. Transferase enzymes like mono and poly(ADP- ribosyl) transferases transfer ADP-ribose from NAD+ to specific amino acid side chains or ADP-ribose units on target proteins. Blocking tankyrase has emerged as a promising strategy in cancer treatment. This article reviews recent advancements in developing novel tankyrase inhibitors. It delves into structure-activity relationships, molecular docking, polypharmacology profiles, and binding mechanisms at the active site. Insights into lead structure development aid in designing potent anti-cancer medications, shedding light on promising avenues in cancer therapy.
期刊介绍:
Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes.
Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer.
As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.