Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-03 DOI:10.1002/cssc.202402093
Ziyi Meng, Madeleine K Wilsey, Astrid M Müller
{"title":"Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal.","authors":"Ziyi Meng, Madeleine K Wilsey, Astrid M Müller","doi":"10.1002/cssc.202402093","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways. In this study, we report the complete defluorination of GenX through electrocatalysis in aqueous LiOH electrolytes, utilizing high surface area anodes consisting of pulsed laser in liquid synthesized [NiFe]-(OH)₂ nanocatalysts on hydrophilic carbon fiber paper. Additional experiments with industrial nickel-iron alloy demonstrated exceptional stability for >100 hours. Including a brief interval of reversed polarity in pulsed electrolysis and optimizing the pulse train sequence enabled the complete defluorination of GenX. Our facile approach employs only nonprecious materials, does not require bisulfate or other auxiliary chemical agents that are consumed, and thus provides a promising strategy for alleviating the environmental impact of PFAS pollutants.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402093"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402093","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways. In this study, we report the complete defluorination of GenX through electrocatalysis in aqueous LiOH electrolytes, utilizing high surface area anodes consisting of pulsed laser in liquid synthesized [NiFe]-(OH)₂ nanocatalysts on hydrophilic carbon fiber paper. Additional experiments with industrial nickel-iron alloy demonstrated exceptional stability for >100 hours. Including a brief interval of reversed polarity in pulsed electrolysis and optimizing the pulse train sequence enabled the complete defluorination of GenX. Our facile approach employs only nonprecious materials, does not require bisulfate or other auxiliary chemical agents that are consumed, and thus provides a promising strategy for alleviating the environmental impact of PFAS pollutants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信