Arginine as a multifunctional additive for high performance S-cathode.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-03 DOI:10.1002/cssc.202402284
Lulu Ren, Ying Guo, Chunhua Ying, Justin Tangxin Zhong, Jin Liu, Wei-Hong Katie Zhong
{"title":"Arginine as a multifunctional additive for high performance S-cathode.","authors":"Lulu Ren, Ying Guo, Chunhua Ying, Justin Tangxin Zhong, Jin Liu, Wei-Hong Katie Zhong","doi":"10.1002/cssc.202402284","DOIUrl":null,"url":null,"abstract":"<p><p>Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt% Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402284"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402284","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt% Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信