Hadi Sudarjat, Chaolong Qin, Diane Ingabire, Aji Alex Moothedathu Raynold, Rudra Pangeni, Adam Pearcy, Tuo Meng, Long Zhao, Michelle Arriaga, Woon N Chow, Jennifer L Puetzer, Xiuling Lu, F Gerard Moeller, Matthew S Halquist, Charles O'Keeffe, Matthew L Banks, Qingguo Xu
{"title":"Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder.","authors":"Hadi Sudarjat, Chaolong Qin, Diane Ingabire, Aji Alex Moothedathu Raynold, Rudra Pangeni, Adam Pearcy, Tuo Meng, Long Zhao, Michelle Arriaga, Woon N Chow, Jennifer L Puetzer, Xiuling Lu, F Gerard Moeller, Matthew S Halquist, Charles O'Keeffe, Matthew L Banks, Qingguo Xu","doi":"10.1016/j.biomaterials.2024.123041","DOIUrl":null,"url":null,"abstract":"<p><p>The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems. Levo-alpha-acetylmethadol (LAAM) is a long-lasting OUD drug, and the thrice-weekly oral LAAM solution can offer better patient compliance compared to the traditional daily methadone therapies. However, LAAM is FDA-approved but withdrawn from the market. As part of the NIH HEAL Initiative, we aim to reintroduce LAAM back to the market to improve OUD therapeutic options by developing a novel Janus LAAM-loaded fibrous buccal film (LFBF) formulation made of a drug-containing electrospun fibrous layer and a backing layer. The buccal administration of LFBF exhibited superior transmucosal delivery of LAAM to systemic circulation with a nearly 4-fold higher drug bioavailability than the conventional oral LAAM solution in rabbits. Furthermore, upon buccal administration in an opioid-dependent rat model, the LFBF significantly decreased fentanyl choice in the fentanyl-dependent rats, while the conventional oral LAAM solution did not at the same dose. Both the buccal film and oral solution of LAAM reduced somatic withdrawal signs in the experimental animals. These findings highlight the buccal delivery of LAAM using electrospun fibers as a promising strategy with improved drug bioavailability. Furthermore, it sheds light on future clinical applications aiming for enhanced treatment outcomes in the battle against the current opioid crisis.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123041"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems. Levo-alpha-acetylmethadol (LAAM) is a long-lasting OUD drug, and the thrice-weekly oral LAAM solution can offer better patient compliance compared to the traditional daily methadone therapies. However, LAAM is FDA-approved but withdrawn from the market. As part of the NIH HEAL Initiative, we aim to reintroduce LAAM back to the market to improve OUD therapeutic options by developing a novel Janus LAAM-loaded fibrous buccal film (LFBF) formulation made of a drug-containing electrospun fibrous layer and a backing layer. The buccal administration of LFBF exhibited superior transmucosal delivery of LAAM to systemic circulation with a nearly 4-fold higher drug bioavailability than the conventional oral LAAM solution in rabbits. Furthermore, upon buccal administration in an opioid-dependent rat model, the LFBF significantly decreased fentanyl choice in the fentanyl-dependent rats, while the conventional oral LAAM solution did not at the same dose. Both the buccal film and oral solution of LAAM reduced somatic withdrawal signs in the experimental animals. These findings highlight the buccal delivery of LAAM using electrospun fibers as a promising strategy with improved drug bioavailability. Furthermore, it sheds light on future clinical applications aiming for enhanced treatment outcomes in the battle against the current opioid crisis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.