{"title":"Ellagic acid-protein nano-complex inhibits tumor growth by reducing the intratumor bacteria and inhibiting histamine production.","authors":"Bingbing Wu, Chenlu Yao, Heng Wang, Huaxing Dai, Bo Tian, Dongxiao Li, Jialu Xu, Haibo Cheng, Fang Xu, Dongdong Sun, Chao Wang","doi":"10.1016/j.biomaterials.2024.123078","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME). Among them, the metabolite histamine that contributes to tumor progression, is significantly reduced in the TME after eP-EA treatment. We show that one possible mechanism by which these microbes promote tumor growth is through the production of histamine. This work suggests that the ellagic acid (EA)-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria and reduce their production of histamine, delineating the potential relationship between intratumor bacteria and their impact on tumors. Our work suggests that the EA-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria, suggesting the role of bacterial metabolites in contributing to tumor progression.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123078"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123078","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME). Among them, the metabolite histamine that contributes to tumor progression, is significantly reduced in the TME after eP-EA treatment. We show that one possible mechanism by which these microbes promote tumor growth is through the production of histamine. This work suggests that the ellagic acid (EA)-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria and reduce their production of histamine, delineating the potential relationship between intratumor bacteria and their impact on tumors. Our work suggests that the EA-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria, suggesting the role of bacterial metabolites in contributing to tumor progression.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.