Construction of PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold with antibacterial function for tension free rectal in-situ reconstruction.
Bingxu Zhang, Xujian Li, Chuan Jiang, Chuanguang Wang, Haifeng Que, Cheng Zheng, Zhixiao Ji, Xudong Tao, Hongtao Xu, Changcan Shi
{"title":"Construction of PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold with antibacterial function for tension free rectal in-situ reconstruction.","authors":"Bingxu Zhang, Xujian Li, Chuan Jiang, Chuanguang Wang, Haifeng Que, Cheng Zheng, Zhixiao Ji, Xudong Tao, Hongtao Xu, Changcan Shi","doi":"10.1016/j.biomaterials.2024.123064","DOIUrl":null,"url":null,"abstract":"<p><p>The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°. On the basis of reducing anastomotic tension and isolating intestinal contents, this double-layer nanofiber anastomotic scaffold not only played an antibacterial effect in the short term after surgery to reduce inflammatory response, but also had the characteristics of multiple three-dimensional network structure like extracellular matrix which could promote tissue healing. The PVA/OHA-Gs@PTMC/PHA scaffold was implanted into a rabbit model simulating mechanical intestinal obstruction, and the results showed that the nanofibers of the scaffold could be degraded in vivo while maintaining a certain stability, that is, the overall structure of the PVA/OHA-Gs@PTMC/PHA scaffold would not shrink and deform due to degradation in a certain period of time. Therefore, the treatment with this scaffold showed better healing at the anastomotic site. Compared to the direct anastomosis group and pure PTMC scaffold group, the double-layer scaffold group promoted a faster return to normal anastomotic strength within 7 days. This PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold appears to be a promising therapeutic strategy to prevent anastomotic leakage after intestinal anastomosis.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123064"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123064","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°. On the basis of reducing anastomotic tension and isolating intestinal contents, this double-layer nanofiber anastomotic scaffold not only played an antibacterial effect in the short term after surgery to reduce inflammatory response, but also had the characteristics of multiple three-dimensional network structure like extracellular matrix which could promote tissue healing. The PVA/OHA-Gs@PTMC/PHA scaffold was implanted into a rabbit model simulating mechanical intestinal obstruction, and the results showed that the nanofibers of the scaffold could be degraded in vivo while maintaining a certain stability, that is, the overall structure of the PVA/OHA-Gs@PTMC/PHA scaffold would not shrink and deform due to degradation in a certain period of time. Therefore, the treatment with this scaffold showed better healing at the anastomotic site. Compared to the direct anastomosis group and pure PTMC scaffold group, the double-layer scaffold group promoted a faster return to normal anastomotic strength within 7 days. This PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold appears to be a promising therapeutic strategy to prevent anastomotic leakage after intestinal anastomosis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.